K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

A O B C E D K H I

a) Do H là trung điểm ED nên \(OH⊥DE\) .

Theo tính chất hai tiếp tuyến cắt nhau ta cũng có \(OK⊥DC\)

Vậy thì \(\Delta HOA\sim\Delta IKA\left(g-g\right)\Rightarrow\frac{OA}{OK}=\frac{AH}{AI}\Rightarrow AI.AO=AK.AH\)

b) Ta thấy \(AD.AE=AB^2=AI.AO=AK.AH\)

Vậy nên \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{AD+AE}{AH.AK}=\frac{2AH}{AH.AK}=\frac{2}{AK}.\)

14 tháng 2 2020

A B C D E K I O H

14 tháng 2 2020

Bo de \(AD.AE=AC^2\) (ban tu chung minh nha , cu tam giac dong dang la ra )

xet \(AD+AE=AD+DH+AD+HE=AH+AD+DH=2AH\)

=> \(\frac{1}{AD}+\frac{1}{AE}=\frac{AD+AE}{AD.AE}=\frac{2AH}{AC^2}\) (1)

ta phai cm \(\frac{2AH}{AC^2}=\frac{2}{AK}\Leftrightarrow AH.AK=AC^2\) (2)

do H la trung diem DE => \(OH\perp DE=>\widehat{ABO}=\widehat{AHO}=\widehat{ACO}=90^0\)

=> A,B,O,H,C thuoc duong tron duong kinh AO

=> \(\widehat{AHC}=\widehat{ABC}\left(\frac{1}{2}sd\widebat{AC}\right)\)

ma \(\widehat{ABC}=\widehat{ACK}\) tinh chat 2 tiep tuyen cat nhau

=> \(\widehat{ACK}=\widehat{AHC}\) lai co \(\widehat{CAK}=\widehat{HAC}\)

=> \(\Delta AKC\approx\Delta ACH\left(g-g\right)\)

=> \(\frac{AK}{AC}=\frac{AC}{AH}\Leftrightarrow AK.AH=AC^2\) (3)

Tu (1),(2),(3) ta co dpcm

a) Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA\(\perp\)BC

Xét ΔOBC có OB=OC(=R)

nên ΔOBC cân tại O(Định nghĩa tam giác cân)

mà OH là đường cao ứng với cạnh BC

nên H là trung điểm của BC(Đpcm)

28 tháng 6 2021

sao không  có câu B bạn ơi ?? có câu c càng tốt nhưng không làm được thì bỏ qua . nhưng bạn giúp minh câu B với , thankkk
 

a) Xét tứ giác ABOC có 

\(\widehat{ABO}\) và \(\widehat{ACO}\) là hai góc đối

\(\widehat{ABO}+\widehat{ACO}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: ABOC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABO vuông tại B có BH là đường cao ứng với cạnh huyền OA, ta được:

\(AH\cdot AO=AB^2\)(1)

Xét (O) có

\(\widehat{ABD}\) là góc tạo bởi tiếp tuyến BA và dây cung BD

\(\widehat{BED}\) là góc nội tiếp chắn \(\stackrel\frown{BD}\)

Do đó: \(\widehat{ABD}=\widehat{BED}\)(Hệ quả góc tạo bởi tiếp tuyến và dây cung)

hay \(\widehat{ABD}=\widehat{AEB}\)

Xét ΔABD và ΔAEB có 

\(\widehat{ABD}=\widehat{AEB}\)

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔAEB(g-g)

Suy ra: \(\dfrac{AB}{AE}=\dfrac{AD}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(AB^2=AE\cdot AD\)(2)

Từ (1) và (2) suy ra \(AH\cdot AO=AD\cdot AE\)(đpcm)

 

6 tháng 3 2021

phần c ???

 

4 tháng 1 2022

\(a,\) Ta có \(OB=OC=R;AB=AC\Rightarrow OA\) là trung trực BC

Do đó \(OA\bot BC=\left\{H\right\}\)

Áp dụng HTL: \(OB^2=OH\cdot OA\Rightarrow OD^2=OH\cdot OA\Rightarrow\dfrac{OD}{OH}=\dfrac{OA}{OD}\)

\(\Rightarrow\Delta OHD\sim\Delta ODA\left(c.g.c\right)\)

\(b,\) Gọi \(\left\{I\right\}=BC\cap AE\)

\(\widehat{OHD}=\widehat{ODA}\Rightarrow\widehat{DHA}=\widehat{ODE}=\widehat{OED}\) (cùng bù với 2 góc bằng nhau, \(\Delta ODE\) cân tại O)

\(\Rightarrow\Delta AEO\sim\Delta AHD\left(g.g\right)\\ \Rightarrow\widehat{AOE}=\widehat{ADH}\)

Mà \(\dfrac{OH}{DH}=\dfrac{OD}{AD}\left(\Delta OHD\sim\Delta ODA\right)\Rightarrow\dfrac{OH}{DH}=\dfrac{OE}{AD}\)

\(\Rightarrow\Delta HEO\sim\Delta HDA\left(g.g\right)\\ \Rightarrow\widehat{OHE}=\widehat{DHA}\)

Mà \(OA\bot BC\Rightarrow\widehat{IHE}=\widehat{IHD}\)

Vậy BC trùng với p/g \(\widehat{DHE}\)

\(c,\) Vì HI là p/g trong của \(\Delta DHE\) và \(HA\bot HI\)

\(\Rightarrow HA\) là p/g ngoài

\(\Rightarrow\dfrac{IE}{ID}=\dfrac{AE}{AD}=\dfrac{HE}{HD}\left(1\right)\)

Mà \(MN\text{//}BE\Rightarrow\dfrac{MD}{BE}=\dfrac{AD}{AE};\dfrac{ND}{BE}=\dfrac{ID}{IE}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow MD=MN\RightarrowĐpcm\)