cho hình chóp S.ABCD, đáy ABCD là vuông, tâm I. Gọi M là trung điểm SA
a) vẽ hình
b) chứng minh CD ∥ (SAB)
c) chứng minh AD ∥ (SBC)
d) chứng minh IM ∥ (SCD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: CD//AB(ABCD là hình vuông)
\(AB\subset\left(SAB\right)\)
CD không nằm trong(SAB)
Do đó: CD//(SAB)
c: AD//BC(ABCD là hình vuông)
\(BC\subset\left(SBC\right)\)
AD không nằm trong mp(SBC)
Do đó: AD//(SBC)
d: Xét ΔSAC có
M,I lần lượt là trung điểm của AS,AC
=>MI là đường trung bình của ΔSAC
=>MI//SC
mà \(SC\subset\left(SCD\right)\) và \(IM\) không nằm trong mp(SCD)
nên IM//(SCD)
a:
b: ABCD là hình chữ nhật
=>AB//CD và BC//AD
BC//AD
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình của ΔSAC
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)
a:
b: BC//AD(ABCD là hình chữ nhật)
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD(ABCD là hình chữ nhật)
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)
a:
b: \(O\in BD\subset\left(SBD\right);M\in SD\subset\left(SBD\right)\)
=>\(OM\subset\left(SBD\right)\)
c: Xét ΔDSB có
O,M lần lượt là trung điểm của DB,DS
=>OM là đường trung bình của ΔSDB
=>OM//SB
OM//SB
\(SB\subset\left(SBA\right)\)
OM không nằm trong mp(SBA)
Do đó: OM//(SBA)
d: OM//SB
\(SB\subset\left(SBC\right)\)
OM không nằm trong(SBC)
Do đó: OM//(SBC)
e: SB//MO
\(MO\subset\left(MAC\right)\)
SB không nằm trong mp(AMC)
Do đó: SB//(MAC)
f: Xét (OMA) và (SAB) có
\(A\in\left(OMA\right)\cap\left(SAB\right)\)
OM//SB
Do đó: (OMA) giao (SAB)=xy, xy đi qua A và xy//OM//SB
a) Gọi H là trung điểm của SC
Ta có:
b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.
Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.
Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)
⇒ CM // (SAB)
c) Ta có:
Mặt khác vì
OI ⊂ (BID) ⇒ SA // (BID)
a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).
Ta có:
⇒ (SAD) ∩ (SBC) = Sx
Và Sx // AD // BC.
b) Ta có: MN // IA // CD
Mà
(G là trọng tâm của ∆SAB) nên
⇒ GN // SC
SC ⊂ (SCD) ⇒ GN // (SCD)
c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)
MN // CD ⇒
Ta có:
a:
b: ABCD là hình vuông
=>AB//CD và AD//BC
CD//AB
\(AB\subset\left(SAB\right)\)
CD không nằm trong mp(SAB)
Do đó: CD//(SAB)
c: AD//BC
\(BC\subset\left(SBC\right)\)
AD không nằm trong mp(SBC)
Do đó: AD//(SBC)
d: Xét ΔSAC có
M,I lần lượt là trung điểm của AS,AC
=>MI là đường trung bình
=>MI//SC
MI//SC
\(SC\subset\left(SCD\right)\)
MI không nằm trong mp(SCD)
Do đó: IM//(SCD)