Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
Các bạn giúp mình với, mình cảm ơn trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
a, \(\left\{{}\begin{matrix}3\left(2x-1\right)^2\ge0\\7\left(3y+5\right)^2\ge0\end{matrix}\right.\Rightarrow3\left(2x-1\right)^2+7\left(3y+5\right)^2\ge0\)
Mà \(3\left(2x-1\right)^2+7\left(3y+5\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}3\left(2x-1\right)^2=0\\\left(3y+5\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy...
b, \(x^2+y^2-2x+10y+26=0\)
\(\Leftrightarrow x^2-2x+1+y^2+10+25=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+5\right)^2=0\)
Mà \(\left(x-1\right)^2+\left(y+5\right)^2\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+5\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-5\end{matrix}\right.\)
Vậy...
\(a,\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{7}{4}=0\\ \Leftrightarrow\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}=0\\ \Leftrightarrow x,y\in\varnothing\left[\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\right]\\ b,\Leftrightarrow\left(x^2-2x+1\right)+\left(9y^2+12y+4\right)+\left(4z^2-4z+1\right)+14=0\\ \Leftrightarrow\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14=0\\ \Leftrightarrow x,y,z\in\varnothing\left[\left(x-1\right)^2+\left(3y+2\right)^2+\left(2z-1\right)^2+14\ge14>0\right]\)
\(c,\Leftrightarrow-\left(x^2-10xy+25y^2\right)-\left(y^2-20y+100\right)-50=0\\ \Leftrightarrow-\left(x-5y\right)^2-\left(y-10\right)^2-50=0\\ \Leftrightarrow x,y\in\varnothing\left[-\left(x-5y\right)^2-\left(y-10\right)^2-50\le-50< 0\right]\)
Bài 1:
a) x2 + y2 - 2x + 10y + 26 = 0
<=> (x2 - 2x + 1) + (y2 + 10y + 25) = 0
<=> (x - 1)2 + (y + 5)2 = 0 (*)
Vì (x - 1)2 \(\ge\)0; (y + 5)2 \(\ge\)0
(*) <=> x - 1 = 0 hay y + 5 = 0
<=> x = 1 I <=> y = -5
b) 64x3 + 48x2 + 12x + 1 = 27
<=> 64x3 - 32x2 + 80x2 - 40x + 52x + 1 - 27 = 0
<=> 64x3 - 32x2 + 80x2 - 40x + 52x - 26 = 0
<=> 64x2(x - \(\frac{1}{2}\)) + 80x(x - \(\frac{1}{2}\)) + 52(x - \(\frac{1}{2}\)) = 0
<=> (x - \(\frac{1}{2}\))(64x2 + 80x + 52) = 0
<=> (x - \(\frac{1}{2}\))[(8x)2 + 2.8x.5 + 52 + 27) = 0
<=> (x - \(\frac{1}{2}\))[(8x + 5)2 + 27) = 0
<=> x - \(\frac{1}{2}\)= 0 (vì (8x + 5)2 + 27 > 0
<=> x = \(\frac{1}{2}\)
Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29
\(2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)=2004\times\left(2005^2+2005+1\right)⋮2004\left(\text{đ}pcm\right)\)
\(2005^3+125=\left(2005+5\right)\left(2005^2-2005\times5+5^2\right)=2010\times\left(2005^2-2005\times5+5^2\right)⋮2010\)
\(x^6+1=\left(x^2+1\right)\left(x^4-x^2+1\right)⋮x^2+1\left(\text{đ}pcm\right)\)
\(x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)⋮x-y;x+y\left(\text{đ}pcm\right)\)
a, 3 - 2 | 5x - 4 | = -11
2|5x - 4| = 14
|5x - 4| = 7
Th1: 5x -4 =7
5x = 11
x= 11/5
Th2:
5x -4 =-7
5x = -3
x= -3/5
a) => 2/5x-4/=14
=> /5x-4/=7
=> 5x-4=7 hoac 5x-4=-7
x=11/5 x=-3/5
Ta có : 3(2x - 1)2 \(\ge0\forall x\)
7(3y + 5)2 \(\ge0\forall x\)
Mà : 3(2x - 1)2 + 7(3y + 5)2 = 0
Nên : 3(2x - 1)2 = 7(3y + 5)2 = 0
\(\Leftrightarrow\hept{\begin{cases}3\left(2x-1\right)^2=0\\7\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)=0\\\left(3y+1\right)=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x=1\\3y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{1}{3}\end{cases}}\)