Tìm số hạng đầu và công sai của các cấp số cộng sau, biết: \(\left\{{}\begin{matrix}S_{15}=585\\u_1^3+u_2^3=302094\end{matrix}\right.\) (d>0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(u_6=u_1+5d=8\Rightarrow u_1=8-5d\)
\(u_2=u_1+d;u_4=u_1+3d\)
\(\Rightarrow\left\{{}\begin{matrix}u_2=8-5d+d=8-4d\\u_4=8-5d+3d=8-2d\end{matrix}\right.\)
\(\Rightarrow\left(8-4d\right)^2+\left(8-2d\right)^2=16\Rightarrow...\)
b/ Câu này làm theo ý hiểu thôi, ko chắc đâu
\(Xet-S_n:\)
\(u_1=u_1\)
\(u_2=u_1+d\)
\(u_3=u_1+2d\)
......
\(u_n=u_1+\left(n-1\right)d\)
\(\Rightarrow S_n=u_1+u_2+...+u_n=u_1+u_1+d+...+u_1+\left(n-1\right)d=n.u_1+d+2d+....+\left(n-1\right)d\)
\(=n.u_1+\left(1+2+...+\left(n-1\right)\right)d=n.u_1+\dfrac{d\left(n-1\right).n}{2}=\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}\)
Tương tụ với S(2n)
\(S_{2n}=u_1+u_2+...+u_{2n}=u_1+u_1+d+....+u_1+\left(2n-1\right)d\)
\(=2n.u_1+d+2d+...+\left(2n-1\right)d=2n.u_1+\left(1+2+...+\left(2n-1\right)\right)d=2n.u_1+d.n\left(2n-2\right)=2n\left(u_1+\left(n-1\right).d\right)\)
\(4S_n=S_{2n}\Leftrightarrow4.\dfrac{n\left[2u_1+\left(n-1\right)d\right]}{2}=2n\left(u_1+\left(n-1\right).d\right)\)
\(\Leftrightarrow2n\left[2u_1+\left(n-1\right)d\right]=2n\left[u_1+\left(n-1\right)d\right]\)\(\Leftrightarrow2u_1=u_1\Rightarrow u_1=0\)
\(u_5=u_1+4d=18\Rightarrow d=\dfrac{18}{4}=4,5\)
Ok check lại số má hộ tui nhó
a: u1-2u4+u6=12 và u2+u5=8
=>u1-2u1-6d+u1+5d=12 và u1+d+u1+4d=8
=>d=12 và 2u1+5d=8
=>d=12 và 2u1=8-5d=8-60=-52
=>u1=-26 và d=12
b: u5-u2=3 và u3*u8=24
=>u1+4d-u1-d=3 và (u1+2d)(u1+7d)=24
=>d=1 và (u1+2)(u1+7)=24
=>d=1 và u1^2+9u1-10=0
=>d=1 và (u1=-10 hoặc u1=1)
a.
\(\left\{{}\begin{matrix}u_1+\left(u_1+4d\right)-\left(u_1+2d\right)=10\\\left(u_1+d\right)+\left(u_1+4d\right)=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u_1=36\\d=-13\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}u_1+d+u_1+3d=5\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4d=5-2u_1\\u_1^2+\left(u_1+4d\right)^2=25\end{matrix}\right.\)
\(\Rightarrow u_1^2+\left(u_1+5-2u_1\right)^2=25\)
\(\Rightarrow u_1^2+u_1^2-10u_1+25=25\)
\(\Rightarrow\left[{}\begin{matrix}u_1=0\Rightarrow d=\dfrac{5}{4}\\u_1=5\Rightarrow d=-\dfrac{5}{4}\end{matrix}\right.\)
1: u3=-3 và u9=29
=>u1+2d=-3 và u1+8d=29
=>-6d=-32 và u1+2d=-3
=>d=16/3 và u1=-3-2d=-3-32/3=-41/3
2: \(S_{20}=\dfrac{20\cdot\left[2\cdot u1+19\cdot d\right]}{2}=10\cdot\left(-5\cdot2+19\cdot3\right)\)
=10(57-10)
=10*47=470
a: u4=4 và u6=8
=>u1+3d=4 và u1+5d=8
=>-2d=-4 và u1+3d=4
=>d=2 và u1=4-3d=-2
b: u1-u3+u5=10 và u1+u6=17
=>u1-u1-2d+u1+4d=10 và u1+u1+5d=17
=>u1+2d=10 và 2u1+5d=17
=>u1=16 và d=-3
c: u1+u2=5 và u3*u5=91
=>u1+u1+d=5 và (u1+2d)(u1+4d)=91
=>2u1+d=5 và (u1+2d)(u1+4d)=91
=>d=5-2u1 và (u1+10-4u1)(u1+20-8u1)=91
=>d=5-2u1 và (-3u1+10)(-7u1+20)=91
(-3u1+10)(-7u1+20)=91
=>21u1^2-60u1-70u1+200=91
=>21u1^2-130u1+109=0
=>u1=1 hoặc u1=109/21
Khi u1=1 thì d=5-2u1=5-2=3
Khi u1=109/21 thì d=5-2u1=5-218/21=-113/21
\(\left\{{}\begin{matrix}u2-3u8=-20\\u_3\cdot u_4=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u1+d-3\left(u1+7d\right)=-20\\u3\cdot u4=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2u1-20d=-20\\u3\cdot u4=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u1+10d=10\\\left(u1+2d\right)\cdot\left(u1+3d\right)=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u1=10-10d\\\left(10-10d+2d\right)\left(10-10d+3d\right)=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u1=10-10d\\\left(-8d+10\right)\left(-7d+10\right)=24\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u1=10-10d\\56d^2-150d+126=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}d\in\varnothing\\u1=10-10d\end{matrix}\right.\)
=>Không có số hạng đầu và công sai nào thỏa mãn yêu cầu đề bài
\(\left\{{}\begin{matrix}S_{15}=585\\u_1^3+\left(u_2\right)^3=302094\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}15\cdot\dfrac{2\cdot u_1+14d}{2}=585\\u_1^3+\left(u_1+d\right)^3=302094\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1+7d=39\\u_1^3+\left(u_1+d\right)^3=302094\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1=39-7d\\\left(39-7d\right)^3+\left(39-7d+d\right)^3=302094\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}u_1=39-7d\\59319-31941d^2+5733d-343d^3+59319-18252d^2+2808d-216d^3=302094\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u_1=39-7d\\118638-50193d+8541d^2-559d^3=302094\end{matrix}\right.\)
=>d=-2,46(loại)
Vậy: Không có bộ số số hạng đầu và công sai nào thỏa mãn đề bài