K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có

\(\begin{array}{l}\cot x{\rm{ }} = {\rm{  - 1}}\\ \Leftrightarrow \cot x{\rm{ }} = {\rm{ cot  - }}\frac{\pi }{4}\\ \Leftrightarrow x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Vậy phương trình đã cho có  nghiệm là \(x{\rm{ }} = {\rm{  - }}\frac{\pi }{4} + k\pi ;k \in Z\)

Chọn A

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

\(\begin{array}{l}\cos \left( {\frac{\pi }{3} + k2\pi \,} \right) = \cos \left( {\frac{\pi }{3}} \right) = \frac{1}{2}\\\sin \left( {\frac{\pi }{3} + k2\pi \,} \right) = \sin \left( {\frac{\pi }{3}} \right) = \frac{{\sqrt 3 }}{2}\\\tan \left( {\frac{\pi }{3} + k2\pi \,} \right) = \frac{{\sin \left( {\frac{\pi }{3} + k2\pi \,\,} \right)}}{{\cos \left( {\frac{\pi }{3} + k2\pi \,\,} \right)}} = \sqrt 3 \\\cot \left( {\frac{\pi }{3} + k2\pi \,\,} \right) = \frac{1}{{\tan \left( {\frac{\pi }{3} + k2\pi \,\,} \right)}} = \frac{{\sqrt 3 }}{3}\end{array}\)

b) Các giá trị lượng giác của góc lượng giác \(\frac{\pi }{3}+\left( 2k+1 \right)\pi \,\,\left( k\in \mathbb{Z} \right)\)

$ \cos \left[\frac{\pi}{3}+(2 \mathrm{k}+1) \pi\right]=\cos \left(\frac{\pi}{3}+\pi+2 \mathrm{k} \pi\right)=\cos \left(\frac{\pi}{3}+\pi\right)=-\cos \frac{\pi}{3}=-\frac{1}{2}$

$\sin \left[\frac{\pi}{3}+(2 \mathrm{k}+1) \pi\right]=\sin \left(\frac{\pi}{3}+\pi+2 \mathrm{k} \pi\right)=\sin \left(\frac{\pi}{3}+\pi\right)=-\sin \frac{\pi}{3}=-\frac{\sqrt{3}}{2}$

$\tan \left[\frac{\pi}{3}+(2 \mathrm{k}+1) \pi\right]=\tan \frac{\pi}{3}=\sqrt{3}$;

$\tan \left[\frac{\pi}{3}+(2 \mathrm{k}+1) \pi\right]=\cot \frac{\pi}{3}=\frac{\sqrt{3}}{3}$

c)

\(\begin{array}{l}\cos \left( {k\pi \,} \right) = \left[ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,;k = 2n + 1\\1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,;k = 2n\,\,\,\end{array} \right.\\\sin \left( {k\pi \,} \right) = 0\\\tan \left( {k\pi \,} \right) = \frac{{\sin \left( {k\pi \,\,} \right)}}{{\cos \left( {k\pi \,\,} \right)}} = 0\\\cot \left( {k\pi \,\,} \right)\end{array}\)

d)

\(\begin{array}{l}\cos \left( {\frac{\pi }{2} + k\pi \,} \right) = 0\\\sin \left( {\frac{\pi }{2} + k\pi \,} \right) = \left[ \begin{array}{l}\sin \left( { - \frac{\pi }{2}} \right)\, =  - 1\,\,\,\,\,\,\,;k = 2n + 1\\\sin \left( {\frac{\pi }{2}\,} \right)\, = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,;k = 2n\,\,\,\end{array} \right.\\\tan \left( {\frac{\pi }{2} + k\pi \,} \right)\\\cot \left( {\frac{\pi }{2} + k\pi \,\,} \right) = 0\end{array}\)

28 tháng 7 2019
https://i.imgur.com/Zdtaxi4.jpg
28 tháng 7 2019

kết quả cuối cùng là bao nhiêu vậy bạn

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,y'=\left(tanx\right)'=\left(\dfrac{sinx}{cosx}\right)'\\ =\dfrac{\left(sinx\right)'cosx-sinx\left(cosx\right)'}{cos^2x}\\ =\dfrac{cos^2x+sin^2x}{cos^2x}\\ =\dfrac{1}{cos^2x}\\ b,\left(cotx\right)'=\left[tan\left(\dfrac{\pi}{2}-x\right)\right]'\\ =-\dfrac{1}{cos^2\left(\dfrac{\pi}{2}-x\right)}\\ =-\dfrac{1}{sin^2\left(x\right)}\)

NV
19 tháng 6 2019

\(sin\left(x+\frac{\pi}{6}\right)=1\Rightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\Rightarrow x=\frac{\pi}{3}+k2\pi\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)

Vậy ta chọn đáp án B