K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\cos x = \frac{{OH}}{{OM}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

\(\sin x = \frac{{OK}}{{OM}}\)

21 tháng 9 2023

a)    

b)     \(\cos 60^\circ \) bằng hoành độ của điểm M

\(\sin 60^\circ \) bằng tung độ của điểm M

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)  Hoành độ của điểm M và M’ bằng nhau

     Tung độ của điểm M và M’ đối nhau

b)  Mối liên hệ giữa các giá trị lượng giác tương ứng của hai góc lượng giác \(\alpha \,\,v\`a \,\, - \alpha \)

21 tháng 9 2023

Tham khảo:

\(\begin{array}{l}(OM,ON) = (OA,ON) - (OA,OM) = \frac{{2\pi }}{3}\\ \Rightarrow \widehat {MON} = {120^0}\\\widehat {MOP} = \widehat {MOA} + \widehat {AOP} = {90^0} + {30^0} = {120^0}\\ \Rightarrow \widehat {NOP} = {360^0} - {120^0} - {120^0} = {120^0}\end{array}\)

Cung MP = cung NP = cung NM

\(\Rightarrow MP = NP = NM\)

\(\Rightarrow \Delta MNP\) đều

21 tháng 9 2023

Tham khảo:

1 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài tập Toán 11 | Giải Toán lớp 11

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Ta thấy \(\sin t = {y_M}\) là tung độ của điểm M trên đường tròn lượng giác và c\(\cos t = {x_M}\) là hoành độ của điểm M trên đường tròn lượng giác.

Với mỗi điểm M xác định, ta chỉ có 1 tung độ và hoành độ duy nhất

Nên ta chỉ xác định duy nhất giá trị sint và cost.

b,

Nếu \(t \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\), ta có: \(\tan t = \frac{{\sin t}}{{{\rm{cost}}}} = \frac{{{y_M}}}{{{x_M}}}\)( \({x_M} \ne 0\))

Nếu \(t \ne k\pi ,k \in \mathbb{Z}\), ta có: \(\cot t = \frac{{{\rm{cost}}}}{{{\rm{sint}}}} = \frac{{{x_M}}}{{{y_M}}}\)( \({y_M} \ne 0\))

Do \({x_M}\), \({y_M}\)xác định duy nhất nên \(\tan t\), \(\cot t\)xác định duy nhất.

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Những điểm biểu diễn góc x trên đường tròn lượng giác có \(tanx = \sqrt 3 \) là M và N.

Điểm M là điểm biểu diễn các góc lượng giác có số đo \(\frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\).

Điểm N là điểm biểu diễn các góc lượng giác có số đo \( - \frac{{2\pi }}{3} + k\pi ,k \in \mathbb{Z}\).