K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo đề bài ta có tam giác ABC cân ở A và \(\widehat A = {56^o}\)

Mà \( \Rightarrow \widehat A + \widehat B + \widehat C = {180^o}\)

\( \Rightarrow \widehat B = \widehat C = ({180^o} - {56^o}):2 = {62^o}\)

b) Vì tam giác ABC cân tại A nên AB = AC ( định nghĩa tam giác cân )

Mà M, N là trung điểm của AB, AC

Nên AM = AN

Xét tam giác AMN có AM = AN nên AMN là tam giác cân tại A

\( \Rightarrow \widehat M = \widehat N = ({180^o} - {56^o}):2 = {62^o}\)

c) Vì \(\widehat {AMN}=\widehat {ABC}\) (cùng bằng 62°)

Mà chúng ở vị trí đồng vị nên MN⫽BC

13 tháng 4 2022

a) \(\widehat{BDM}=180^0-\widehat{BMD}-\widehat{DBM}=180^0-\widehat{BMD}-\widehat{DME}=\widehat{CME}\)

\(\Rightarrow\)△BMD∼△CEM (g-g)

b) \(\Rightarrow\dfrac{BD}{CM}=\dfrac{MD}{EM}\Rightarrow\dfrac{BD}{BM}=\dfrac{MD}{EM}\)

\(\Rightarrow\)△BMD∼△MED (c-g-c).

\(\Rightarrow\widehat{BDM}=\widehat{MDE}\Rightarrow\)DM là tia p/g góc BDE.

13 tháng 4 2022

Em xin phép được úp hình học minh họa ạ!undefined

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Vì tam giác ABC cân tại A

\( \Rightarrow \widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ABF} = \widehat {ACE}\)

b) Xét \(\Delta ECA\) và \(\Delta FBA\)có:

\(\widehat{A}\) chung

AB = AC

\(\widehat {ABF} = \widehat {ACE}\)

\( \Rightarrow \)\(\Delta ECA\)= \(\Delta FBA\)( g – c – g )

\( \Rightarrow AE = AF và EC = BF\) (2 cạnh tương ứng)

\( \Rightarrow \Delta AEF\) cân tại A

c) Xét tam giác IBC có :

\(\widehat B = \widehat C \Rightarrow \dfrac{1}{2}\widehat B = \dfrac{1}{2}\widehat C \Rightarrow \widehat {ICB} = \widehat {IBC}\)

Do đó, tam giác IBC cân tại I ( 2 góc ở đáy bằng nhau )

\( \Rightarrow IB = IC\)( cạnh tương ứng )

Vì EC = BF ( câu b) và IB = IC

\( \Rightarrow \) EC – IC = BF – BI

\( \Rightarrow \) EI = FI

\( \Rightarrow \Delta IEF\) cân tại I

16 tháng 1 2020

A D E B C I M N K F

a) +) Chứng minh \(\Delta\)DAC = \(\Delta\)BAE 

Thật vậy: Ta có: AD = AB ( \(\Delta\)DAB đều ) 

                         ^DAB = ^CAE ( = 60\(^o\); \(\Delta\)DAB đều ; \(\Delta\)CAE đều ) => ^DAC = ^BAE 

                           CA = AE ( \(\Delta\)CAE đều )

Từ 3 điều trên => \(\Delta\)DAC = \(\Delta\)BAE ( c.g.c) (1)

=>  ^ABE = ^ADC (2)

+) Xét \(\Delta\)KAD và \(\Delta\)KIB có: ^DKA = ^BKI ( đối đỉnh )

                                                  ^KDA = ^KBI( theo  ( 2)  )

                    mà ^DKA + ^KDA + ^KAD= ^BKI + ^KBI + ^KIB = 180\(^o\)

=>  ^KIB = ^KAD = ^BAD=  60\(^o\)

=> ^DIB = 60\(^o\)

b) Từ (1) => DC = BE mà M là trung điểm DC; N là trung điểm BE 

=> DM  = BN (3) 

+) Xét \(\Delta\)BAN và \(\Delta\)DAM 

có: BN = DM ( theo (3)

     ^ABN = ^ADM ( theo (2)

     AB = AD ( \(\Delta\)ADB đều )

=> \(\Delta\)BAN = \(\Delta\)DAM  (4) 

=> AN = AM  => \(\Delta\)AMN cân tại A  (5)

+) Từ (4) => ^BAN = ^DAM => ^BAM + ^MAN = ^DAB + ^BAM  

=> ^MAN = ^DAB = 60\(^o\)(6)

Từ (5); (6) => \(\Delta\)AMN đều 

c) +) Trên tia đối tia MI lấy điểm F sao cho FI = IB => \(\Delta\)FIB cân tại I 

mà ^BIF = ^BID = 60\(^{\text{​​}o}\)( theo (a))

=> \(\Delta\)FIB đều  (7)

=> ^DBA = ^FBI( =60\(^o\))

=> ^DBF + ^FBA = ^FBA + ^ABI 

=> ^DBF = ^ABI  

Lại có: BI = BF ( theo (7) ) và BA = BD ( \(\Delta\)BAD đều )

Từ (3) điều trên => \(\Delta\)DFB = \(\Delta\)AIB  => ^AIB = ^DFB = 180\(\text{​​}^o\)- ^BFI = 180\(\text{​​}^o\)-60\(\text{​​}^o\)=120\(\text{​​}^o\)

+) Mặt khác ^BID = 60 \(\text{​​}^o\)( theo (a) ) 

=> ^DIE = 180\(\text{​​}^o\)- ^BID = 120 \(\text{​​}^o\)và ^DIA = ^AIB - ^BID = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^AIE = ^DIE - ^DIA = 120\(\text{​​}^o\)-60\(\text{​​}^o\)=60\(\text{​​}^o\)

=> ^DIA = ^AIE ( = 60\(\text{​​}^o\)

=> IA là phân giác ^DIE.

                       

13 tháng 10 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC

b: Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

29 tháng 9 2018

B H N M A C

MN là đường trung bình của \(\Delta ABC\Rightarrow MN//AC\Rightarrow\widehat{MNH}=\widehat{C}\)

HM là đường trung tuyến ứng với cạnh huyền AB của \(\Delta AHB\Rightarrow HM=MB=\frac{1}{2}AB\)

\(\Rightarrow\Delta HMB\)cân tại M \(\Rightarrow\widehat{MHB}=\widehat{B}=2\widehat{C}\)

Ta có: \(\widehat{MHB}=\widehat{HMN}+\widehat{MNH}\Rightarrow2\widehat{C}=\widehat{HMN}+\widehat{C}\Rightarrow\widehat{HMN}=\widehat{C}\)

Vậy \(\widehat{HMN}=\widehat{MHN}\left(=\widehat{C}\right)\) nên tam giác HMN cân

1 tháng 8 2023

.Ta có :

AH⊥BC,HE⊥AB→\(\widehat{AEH}=\widehat{AHB}\)

=> \(\Delta AEH\approx\Delta AHB\)(g.g)

=>\(\dfrac{AE}{AH}=\dfrac{AH}{AB}\)

=>AH\(^2\)=AE.AB

Lam tuong tu ta dc AH\(^2\)=AF.AC

=> AE.AB=AF.AC

 

a: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nen AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB