Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC ( \(H\in BD\)). Các tia phân giác của góc HAC và AHC cắt nhau tại I. Tia phân giác của góc HAB cắt BC tại D. Chứng mibg CI đi qua trung điểm của AD
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
SK
28 tháng 3 2017
a) Ta có : HAC + HAB = 90
Mà ABC+ BCA = 90 ( do góc A = 90 , tong ba goc trong tam giac = 180)
Bây giờ chứng minh HAB= BCA
Ta có : HAB + HAC = 90
BCA + HAC = 90 (do góc H =90 )
=> HAB = BCA
=> HAC = ABC
19 tháng 2 2023
góc CAD+góc BAD=90 độ
góc CDA+góc HAD=90 độ
mà góc BAD=góc HAD
nên góc CAD=góc CDA
=>ΔCAD cân tại C
Xét ΔCAH có
AI,HI là phân giác
nên I là tâm đường tròn nôi tiếp
=>CI là phân giác của góc ACD
mà ΔCAD cân tại C
nên CI đi qua trung điểm của AD