K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a: 

loading...

b: CD//AB(ABCD là hình vuông)

\(AB\subset\left(SAB\right)\)

CD không nằm trong(SAB)

Do đó: CD//(SAB)

c: AD//BC(ABCD là hình vuông)

\(BC\subset\left(SBC\right)\)

AD không nằm trong mp(SBC)

Do đó: AD//(SBC)

d: Xét ΔSAC có

M,I lần lượt là trung điểm của AS,AC

=>MI là đường trung bình của ΔSAC

=>MI//SC

mà \(SC\subset\left(SCD\right)\) và \(IM\) không nằm trong mp(SCD)

nên IM//(SCD)

31 tháng 10 2023

a:
loading...

b: ABCD là hình vuông

=>AB//CD và AD//BC

CD//AB

\(AB\subset\left(SAB\right)\)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

c: AD//BC

\(BC\subset\left(SBC\right)\)

AD không nằm trong mp(SBC)

Do đó: AD//(SBC)

d: Xét ΔSAC có

M,I lần lượt là trung điểm của AS,AC

=>MI là đường trung bình

=>MI//SC

MI//SC 

\(SC\subset\left(SCD\right)\)

MI không nằm trong mp(SCD)

Do đó: IM//(SCD)

19 tháng 10 2023

loading...  loading...  

31 tháng 10 2023

a: 

loading...

b: ABCD là hình chữ nhật

=>AB//CD và BC//AD

BC//AD

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình của ΔSAC

=>OH//SA
OH//SA

\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

 

27 tháng 10 2023

a: loading...

b: BC//AD(ABCD là hình chữ nhật)

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD(ABCD là hình chữ nhật)

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình

=>OH//SA

OH//SA
\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

27 tháng 10 2023

a: 

loading...

b: \(O\in BD\subset\left(SBD\right);M\in SD\subset\left(SBD\right)\)

=>\(OM\subset\left(SBD\right)\)

c: Xét ΔDSB có

O,M lần lượt là trung điểm của DB,DS

=>OM là đường trung bình của ΔSDB

=>OM//SB

OM//SB

\(SB\subset\left(SBA\right)\)

OM không nằm trong mp(SBA)

Do đó: OM//(SBA)

d: OM//SB

\(SB\subset\left(SBC\right)\)

OM không nằm trong(SBC)

Do đó: OM//(SBC)

e: SB//MO

\(MO\subset\left(MAC\right)\)

SB không nằm trong mp(AMC)

Do đó: SB//(MAC)

f: Xét (OMA) và (SAB) có

\(A\in\left(OMA\right)\cap\left(SAB\right)\)

OM//SB

Do đó: (OMA) giao (SAB)=xy, xy đi qua A và xy//OM//SB

3 tháng 8 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi H là trung điểm của SC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

b) Gọi M’ là trung điểm của SA ⇒ MM′ // AD và MM′ = AD/2.

Mặt khác vì BC // AD và BC = AD/2 nên BC // MM′ và BC = MM′.

Do đó tứ giác BCMM’ là hình bình hành ⇒ CM // BM′ mà BM′ ⊂ (SAB)

⇒ CM // (SAB)

c) Ta có: Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mặt khác vì Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giải sách bài tập Toán 11 | Giải sbt Toán 11

OI ⊂ (BID) ⇒ SA // (BID)

5 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Dễ thấy S là một điểm chung của hai mặt phẳng (SAD) và (SBC).

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SAD) ∩ (SBC) = Sx

Và Sx // AD // BC.

b) Ta có: MN // IA // CD

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

(G là trọng tâm của ∆SAB) nên 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 ⇒ GN // SC

SC ⊂ (SCD) ⇒ GN // (SCD)

c) Giả sử IM cắt CD tại K ⇒ SK ⊂ (SCD)

MN // CD ⇒

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song