x×2+x×1/5=1.1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2=2\sqrt{2}+\sqrt{5}+1\)
2: \(\dfrac{1}{\sqrt{3}+\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}+\dfrac{2\left(1+\sqrt{7}\right)}{-6}\)
\(=\dfrac{\sqrt{7}-\sqrt{3}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{3\left(\sqrt{7}-\sqrt{3}\right)-4\left(\sqrt{7}+1\right)}{12}=\dfrac{-\sqrt{7}-3\sqrt{3}-4}{12}\)
3:
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{2-\sqrt{a}}=-\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)}{\sqrt{a}-2}=-\sqrt{a}\)
4:
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)
1) \(\dfrac{1}{3-2\sqrt{2}}+\dfrac{1}{\sqrt{5}+2}\)
\(=\dfrac{3+2\sqrt{2}}{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}\)
\(=\dfrac{3+2\sqrt{2}}{3^2-\left(2\sqrt{2}\right)^2}+\dfrac{\sqrt{5}-2}{\left(\sqrt{5}\right)^2-2^2}\)
\(=\dfrac{3+2\sqrt{2}}{1}+\dfrac{\sqrt{5}-2}{1}\)
\(=3+2\sqrt{2}+\sqrt{5}-2\)
\(=2\sqrt{2}+\sqrt{5}+1\)
2) \(\dfrac{1}{\sqrt{3}-\sqrt{7}}+\dfrac{2}{1-\sqrt{7}}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right)}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{\left(1-\sqrt{7}\right)\left(1+\sqrt{7}\right)}\)
\(=\dfrac{\sqrt{3}+\sqrt{7}}{\left(\sqrt{3}\right)^2-\left(\sqrt{7}\right)^2}+\dfrac{2\cdot\left(1+\sqrt{7}\right)}{1^2-\left(\sqrt{7}\right)^2}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{2\cdot\left(1+\sqrt{7}\right)}{6}\)
\(=\dfrac{-\sqrt{3}-\sqrt{7}}{4}-\dfrac{1+\sqrt{7}}{3}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}}{12}-\dfrac{4+4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-3\sqrt{7}-4-4\sqrt{7}}{12}\)
\(=\dfrac{-3\sqrt{3}-7\sqrt{7}-4}{12}\)
3) \(\dfrac{a-2\sqrt{a}}{2-\sqrt{a}}\)
\(=-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\)
\(=-\dfrac{\sqrt{a}\cdot\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)
\(=-\sqrt{a}\)
4) \(\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}\cdot\sqrt{xy}+\sqrt{y}\cdot\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{xy}\)
a) \(1-\left(\frac{2x}{3}+2\right)=-1\cdot\frac{1}{3}\)
\(1-\frac{2}{3}x-2=-\frac{1}{3}\)
\(-\frac{2}{3}x-1=-\frac{1}{3}\)
\(-\frac{2}{3}x=\frac{2}{3}\)
\(x=-1\)
----------------------------------------------------------
b) \(\frac{2}{5}x-1\cdot\frac{1}{2}x+x=\frac{1}{3}\)
\(\left(\frac{2}{5}-\frac{1}{2}+1\right)x=\frac{1}{3}\)
\(\frac{9}{10}x=\frac{1}{3}\)
\(x=\frac{1}{3}:\frac{9}{10}\)
\(x=\frac{10}{27}\)
Tìm x biết:
a,x-5/7=1/9
b,2x/5=6/2x+1
c,11/8+13/6=85/x
d,2x-2/11=1.1/5
e,x/15=3/5+-2/3
f,x/182=-6/14.35/91
a, \(x\) - \(\dfrac{5}{7}\) = \(\dfrac{1}{9}\)
\(x\) = \(\dfrac{1}{9}\) + \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{52}{63}\)
b, \(\dfrac{2x}{5}\) = \(\dfrac{6}{2x+1}\)
2\(x\).(2\(x\) + 1) = 30
4\(x^2\)+ 2\(x\) - 30 = 0
4\(x^2\) + 12\(x\) - 10\(x\) - 30 = 0
(4\(x^2\) + 12\(x\)) - (10\(x\) + 30) =0
4\(x\).(\(x\) + 3) - 10.(\(x\) +3) = 0
2 (\(x\) + 3).(2\(x\) - 5) = 0
\(\left[{}\begin{matrix}x+3=0\\2x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-3\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; \(\dfrac{5}{2}\)}
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)..\left(1+\frac{1}{2019}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{2020}{2019}\)
\(=\frac{2020}{2}=1010\)
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)...\left(1+\frac{1}{2019}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot...\cdot\frac{2020}{2019}\)
\(=\frac{2020}{2}\)
\(=1010\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{499}{500}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{499}{500}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{499}{500}\)
\(\Leftrightarrow x=499\)
bài 1
a. = -10/3
b. = 14/5
c = 1/9
p = 1/9
bài 2.
a. x= 271/75
b. x = 1/3
bài 2
a. x - 10/3 = 7/15 . 3/5
x - 10/3 = 7/25
x = 7/25 + 10/3
x = 271/75
b. 8/23 . 46/24 - x = 1/3
2/3 - x = 1/3
x = 2/3 - 1/3
x = 1/3
\(x\times2+x\times\dfrac{1}{5}=1.\dfrac{1}{3}\\ \Rightarrow x\times\left(2+\dfrac{1}{5}\right)=\dfrac{1}{3}\\ \Rightarrow x\times\dfrac{11}{5}=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{5}{33}\)