Phân tích thành nhân tử chung:
\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)+ 1
Mong các bạn có thể mình giải bài này càng nhanh càng tốt nha!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\frac{2016^2-1}{2016^2}=\frac{1.3}{2.3}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{2015.2017}{2016.2016}\)
\(=\frac{\left(1.2.3....2015\right).\left(3.4....2016.2017\right)}{\left(2.3....2016\right)\left(2.3......2015.2016\right)}=\frac{2017}{2.2016}=\frac{2017}{4032}\)
a) Đặt: x = a- b; y = b - c ; z = c- a
Ta có: x + y + z = 0
=> \(A=x^3+y^3+z^3=3xyz+\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)=3xyz\)
=> \(A=3xyz=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
b) Đặt: \(a=x^2-2x\)
Ta có: \(B=a\left(a-1\right)-6=a^2-a-6=\left(a+2\right)\left(a-3\right)=\left(x^2-2x+2\right)\left(x^2-2x-3\right)\)
\(=\left(x^2-2x+2\right)\left(x+1\right)\left(x-3\right)\)
d) \(D=4\left(x^2+2x-8\right)\left(x^2+7x-8\right)+25x^2\)
Đặt: \(x^2-8=t\)
Ta có: \(D=4\left(t+2x\right)\left(t+7x\right)+25x^2\)
\(=4t^2+36xt+81x^2=\left(2t+9x\right)^2\)
\(=\left(2x^2+9x-16\right)^2\)
A=(3+1)(32+1)(34+1)(38+1)(316+1)
=>2A=2.(3+1)(32+1)(34+1)(38+1)(316+1)
=(3-1)(3+1)(32+1)(34+1)(38+1)(316+1)
=(32-1)(32+1)(34+1)(38+1)(316+1)
=(34+1)(34+1)(38+1)(316+1)
=(38-1)(38+1)(316+1)
=(316-1)(316+1)
=332-1
=>A=\(\frac{3^{32}-1}{2}
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Câu hỏi của Access_123 - Toán lớp 8 - Học toán với OnlineMath
a) 4(x2-y2)-8(x-ay)-4(a2-1)
=> 4x2-4y2-8x+8ay-4a2+4
=> 4(x2-y2-2x+2ay-a2+1)
c) a5+a4+a3 +a2 +a+1
=> a(a4+a3+a2+a+1)+1
(a + 1)(a + 2)(a + 3)(a + 4) + 1
= (a2 + 4a + a + 4)(a2 + 3a + 2a + 6) + 1
= (a2 + 5a + 4)(a2 + 5a + 6) + 1 (1)
Đặt a2 + 5a + 5 = b
=> a2 + 5a + 4 = b - 1
a2 + 5a + 6 = b + 1
(1) = (b - 1)(b + 1) + 1
= b2 - 1 + 1
= b2
= (a2 + 5a + 5)2
\(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left[\left(a+1\right).\left(a+4\right)\right].\left[\left(a+2\right).\left(a+3\right)\right]+1\)
\(=\left(a^2+4a+a+4\right).\left(a^2+2a+3a+6\right)+1=\left(a^2+5a+4\right).\left(a^2+5a+6\right)+1\)
Đặt : \(a^2+5a+5=b\) thì ta có :
\(\left(b-1\right).\left(b+1\right)+1=b^2-1+1=b^2\)
thay \(a^2+5a+5\) vào b . ta được :
\(b^2=\left(a^2+5a+5\right)^2\)
VẬy : \(\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)+1=\left(a^2+5a+5\right)^2\)