cho tam giác ABC vuông tại A, AH là đường cao
a) Biết BH=4 cm, CH=2cm. Tính AB.AC
b) Kẽ HD vuông góc tại D, HE vuông góc AC tại F
Cmr 1. \(BD=BC.\cos^3B\)
2. \(DE^3=BD.CE.BC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(BC=BH+CH=2+4=6\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC=4.6=24\Rightarrow AB=2\sqrt{6}\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC=2.6=12\Rightarrow AC=2\sqrt{3}\left(cm\right)\)
b) Ta có: \(BC.cos^3B=BC.\dfrac{AB^3}{BC^3}=\dfrac{AB^3}{BC^2}\)
Ta có: \(AB^4=\left(AB^2\right)^2=\left(BH.BC\right)^2=BH^2.BC^2=BD.BA.BC^2\)
\(\Rightarrow AB^3=BD.BC^2\Rightarrow BD=\dfrac{AB^3}{BC^2}=BC.cos^3B\)
Vì \(\angle HDA=\angle HEA=\angle DAE=90\Rightarrow ADHE\) là hình chữ nhật
\(\Rightarrow DE=AH\)
Ta có: \(AH^4=\left(AH^2\right)^2=\left(BH.CH\right)^2=BH^2.CH^2\)
\(=BD.BA.CE.CA=BD.CE.\left(AB.AC\right)=BD.CE.AH.BC\)
\(\Rightarrow AH^3=BD.CE.BC\Rightarrow DE^3=BD.CE.BC\)
ta có BH+CH=BC⇒BC=6BH+CH=BC⇒BC=6
lại có AH2=BH⋅CH⇒AH=√8AH2=BH⋅CH⇒AH=8
mặt khác AH⋅BC=AB⋅AC⇒AB⋅AC=6√8AH⋅BC=AB⋅AC⇒AB⋅AC=68
b,phan1 cos^3 BH la j
2 AH2=BH⋅CH⇒AH4=BH2⋅CH2AH2=BH⋅CH⇒AH4=BH2⋅CH2
ma BH2=BD⋅AB,HC2=EC⋅ACBH2=BD⋅AB,HC2=EC⋅AC
⇒AH4=BD⋅AB⋅EC⋅AC⇒AH4=BD⋅AB⋅EC⋅AC
nhungAH⋅BC=AB⋅ACAH⋅BC=AB⋅AC nên ta có AH4=BD⋅EC⋅AH⋅BC⇒AH3=DB⋅EC⋅BC
tu ve hinh nha
\(BD=BH\cdot COSB\Rightarrow BD^3=COSB^3\cdot BH^3\)
\(BD^3=COSB^3\cdot BH\cdot BD\cdot AB\)(doBH^2=BD*AB)
\(BD^2=COSB^3\cdot BH\cdot AB\Rightarrow BD=COSB^3\cdot\frac{BH}{BD}\cdot AB\)=\(COSB^3\cdot\frac{BC}{AB}\cdot AB=BC\cdot COSB^3\)
mk đang vội nên làm hơi tất thông cảm nha
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔHAC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2)suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>HE=HF
c: Xét ΔFED có
FH là trung tuyến
FH=ED/2
=>ΔFED vuông tại F
=>FE vuông góc FD
=>FD vuông góc HC
ΔHFD cân tại H có HC là đường cao
nên HC là phân giác của góc FHD
Xét ΔHFC và ΔHDC có
HF=HD
góc FHC=góc DHC
HC chung
=>ΔHFC=ΔHDC
=>góc HDC=góc HFC=90 độ
=>HD vuông góc DC
TA CÓ \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
A) VÌ AH VUÔNG GÓC VỚI BC
=> AH LÀ ĐƯỜNG CAO
MÀ TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG CHÍNH LÀ ĐƯỜNG TRUNG TUYẾN
=> AH LÀ TRUNG TUYẾN CỦA BC
=> BH=CH(ĐPCM)
B) XÉT TAM GIÁC NHA
Vì tam giác ABC cân tại A suy ra AB=AC, góc B=góc C
Xét tam giác ABH và tam giác ACH
có AB=AC(CMT)
góc AHC=góc AHB (=900)
góc B=góc C
suy ra tam giác ABH = tam giác ACH (cạnh huyền-góc nhọn)
suy ra BH=CH (hai cạnh tương ứng)
b) Xét tam giac BHD và tam giác CHE
có BH=CH (CMT)
góc B=góc C
góc HDB = góc HEC = 900
suy ra tam giac BHD = tam giác CHE (cạnh huyền-góc nhọn)
suy ra BD=CE (hai cạnh tương ứng)
ta co \(BH+CH=BC\Rightarrow BC=6\)
lai co \(AH^2=BH\cdot CH\Rightarrow AH=\sqrt{8}\)
mat khac \(AH\cdot BC=AB\cdot AC\Rightarrow AB\cdot AC=6\sqrt{8}\)
b,phan1 cos^3 BH la j
2 \(AH^2=BH\cdot CH\Rightarrow AH^4=BH^2\cdot CH^2\)
ma \(BH^2=BD\cdot AB,HC^2=EC\cdot AC\)
\(\Rightarrow AH^4=BD\cdot AB\cdot EC\cdot AC\)
nhung\(AH\cdot BC=AB\cdot AC\) nên ta có \(AH^4=BD\cdot EC\cdot AH\cdot BC\Rightarrow AH^3=DB\cdot EC\cdot BC\)