do cac ban chung minh moi tam giac deu can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta ABC\) có AM = AN (gt)
\(\Rightarrow\)\(\Delta AMN\) cân tại A (t/c)
mà \(\widehat{A} = 60^0\)(Tg ABC đều)
\(\Rightarrow\)\(\Delta AMN \) đều
b) Ta có:
\(\widehat{B} = 60^0\)
\(\widehat{AMN} = 60^0\)
mà 2 góc này nằm ở vị trí đồng vị
\(\Rightarrow\)MN // BC
a) Vì \(\Delta ABC\) đều nên \(\widehat{MAN}=60^o\) (1)
Vì \(AM=AN\Rightarrow\Delta AMN\) cân tại A (2)
Từ (1) và (2) suy ra \(\Delta AMN\) đều.
b) Do \(\Delta ABC\) đều \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Áp dụng t/c tổng 3 góc trog 1 t/g ta có:
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(\Rightarrow2\widehat{ABC}=180^o-\widehat{BAC}\)
\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(3\right)\)
Do \(\Delta AMN\) cân tại A
\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)
Áp dụng t/c tổng 3 góc trog 1 t/g ta có:
\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)
\(\Rightarrow2\widehat{AMN}=180^o-\widehat{BAC}\)
\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\widehat{ABC}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị nên MN // BC.
tu ve hinh :
xet tamgiac AMB va tamgiac AMC co : goc BAM = goc CAM do AM la phan giac cua goc BAC (gt)
AB = AC va goc ABC = goc ACB do tamgiac ABC can tai A (gt)
=> tamgiac AMB = tamgiac AMC (c - g - c) (1)
b, (1) => goc AMB = goc AMC
goc AMB + goc AMC = 180 (ke bu)
=> goc AMB = 90
=> AM | BC (dn)