Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b ) Xét tam giác BMD và tam giác CNE , có :
BD = CE ( gt)
góc MBD = góc ABC
góc NCE = góc ACB
mà góc ABC = góc ACB nên góc MBD = góc NCE
=> tam giác BMD = tam giác CNE ( cạnh huyền góc nhọn )
=> DM = EN ( 2 cạnh tương ứng )
c ) Xét tam giác MBA và tam giác NCA , có :
AB=AC ( gt)
MB = NC ( tam giác BMD = CNE )
180 - góc ABC = góc ABM
180 - góc ACB = góc ACN
mà góc ABC = góc ACB nên góc ABM = góc ACN
=> tam giác MBA = tam giác NCA (c.g.c)
=> AM = AN ( 2 cạnh tương ứng)
=> tam giác AMN cân
a: Xét tứ giác AEMD có
góc AEM=góc ADM=góc DAE=90 độ
nên AEMD là hình chữ nhật
b: Vì M đối xứng với N qua AB
nên ABvuông góc với MN tại E và E là trung điểm của MN
Xét tứ giác AMBN có
E là trung điểm chung của AB và MN
nên AMBN là hình bình hành
mà MA=MB
nên AMBN là hình thoi
c: Xét tứ giác ANMC có
NM//AC
NM=AC
Do đó: ANMC là hình bình hành
=>AM cắt CN tại trung điểm của mỗi đường
=>C,O,N thẳng hàg
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông