K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

1. Vì MN//BC nên \(\widehat {AMN} = \widehat {ABC}\)( 2 góc đồng vị), mà \(\widehat {ABC} = 60^\circ \)nên \(\widehat {AMN} = 60^\circ \)

Vì \(\widehat {AMN} + \widehat {BMN} = 180^\circ \) (2 góc kề bù)

\(\begin{array}{l} \Rightarrow 60^\circ  + \widehat {BMN} = 180^\circ \\ \Rightarrow \widehat {BMN} = 180^\circ  - 60^\circ  = 120^\circ \end{array}\)

Vì \(\widehat {ANM} + \widehat {MNC} = 180^\circ \)(2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {ANM} + 150^\circ  = 180^\circ \\ \Rightarrow \widehat {ANM} = 180^\circ  - 150^\circ  = 30^\circ \end{array}\)

Vì MN//BC nên \(\widehat {ANM} = \widehat {ACB}\) ( 2 góc đồng vị), mà \(\widehat {ANM} = 30^\circ \)nên \(\widehat {ACB} = 30^\circ \).

2. Vì xx’//yy’ nên \(\widehat {x'AB} = \widehat {ABy}\)( 2 góc so le trong)

Mà zz’\( \bot \) xx’ nên \(\widehat {x'AB} = 90^\circ \)

Do đó, \(\widehat {ABy} = 90^\circ \) nên zz’ vuông góc với yy’.

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì \(\Delta ABC = \Delta DEF\) nên BC = EF ( 2 cạnh tương ứng); \(\widehat A = \widehat {EDF}\) ( 2 góc tương ứng)

Mà BC = 4 cm nên EF = 4 cm

Trong tam giác ABC có: \(\widehat A + \widehat B + \widehat C = 180^\circ \) ( định lí tổng ba góc trong một tam giác)

\(\begin{array}{l} \Rightarrow \widehat A + 40^\circ  + 60^\circ  = 180^\circ \\ \Rightarrow \widehat A = 180^\circ  - 40^\circ  - 60^\circ  = 80^\circ \end{array}\)

Mà \(\widehat A = \widehat {EDF}\) nên \(\widehat {EDF} = 80^\circ \)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Vì Ax // Dy, mà AD \( \bot \) Ax nên AD \( \bot \) Dy. Do đó, \(\widehat{ADC}=90^0\)

Vì Ax // Dy nên \(\widehat {ABC} = \widehat {BCy}\) ( 2 góc so le trong), mà \(\widehat {BCy} = 50^\circ  \Rightarrow \widehat {ABC} = 50^\circ \)

Vậy \(\widehat{ADC}=90^0; \widehat {ABC} = 50^\circ \)

18 tháng 9 2023

Xét hai tam giác ABC và DEF có:

\(\begin{array}{l}AB = DE\\AC = DF\\\widehat {BAC} = \widehat {EDF} (= {60^\circ })\end{array}\)

\(\Rightarrow \Delta ABC = \Delta DEF\)(c.g.c)

Do đó:

\(BC=EF = 6cm\) ( 2 cạnh tương ứng)

\( \widehat {ABC} =\widehat {DEF}= {45^o}\) (2 góc tương ứng)

\(\begin{array}{l}\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o}\\ \Rightarrow {60^o} + {45^o} + \widehat {ACB} = {180^o}\\ \Rightarrow \widehat {ACB} = {75^o}\end{array}\)

\( \Rightarrow \widehat {EFD} = \widehat {ACB} = {75^o}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a) Vì \(\widehat {{A_1}} + \widehat {{A_2}} = 180^\circ \) (2 góc kề bù)

\( \Rightarrow \widehat {{A_1}} + 40^\circ  = 180^\circ \)

\( \Rightarrow \widehat {{A_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Ta có: \(\widehat {{A_1}} = \widehat {{A_3}}\) (2 góc đối đỉnh), mà \(\widehat {{A_1}} = 140^\circ \) nên \(\widehat {{A_3}} = 140^\circ \)

\(\widehat {{A_2}} = \widehat {{B_4}}\)(2 góc đối đỉnh), mà \(\widehat {{A_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

Vì \(\widehat {{A_2}} = \widehat {{B_4}} = 40^\circ \), mà 2 góc này ở vị trí so le trong

\( \Rightarrow \) 2 góc đồng vị bằng nhau nên

 \(\begin{array}{l}\widehat {{A_1}} = \widehat {{B_1}} = 140^\circ ;\widehat {{A_2}} = \widehat {{B_2}} = 40^\circ ;\\\widehat {{A_3}} = \widehat {{B_3}} = 140^\circ ;\widehat {{A_4}} = \widehat {{B_4}} = 40^\circ \end{array}\)

b) Ta có:

\(\begin{array}{l}\widehat {{A_1}} + \widehat {{B_4}} = 140^\circ  + 40^\circ  = 180^\circ \\\widehat {{A_2}} + \widehat {{B_3}} = 40^\circ  + 140^\circ  = 180^\circ \end{array}\)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Do \(\Delta ABC = \Delta DEF\) nên \(\widehat B = \widehat E = {80^o}\); \(\widehat D = \widehat A = {60^o}\); \(\widehat C = \widehat F\) ( các góc tương ứng)

Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = 180^\circ \\ \Rightarrow 60^\circ  + 80^\circ  + \widehat C = 180^\circ \\ \Rightarrow \widehat C = 180^\circ  - 60^\circ  - 80^\circ  = 40^\circ \end{array}\)

Do đó \(\widehat F = 40^\circ \)

Vậy \(\widehat B = {80^o}; \widehat D ={60^o}; \widehat C = \widehat F= 40^\circ \).

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

Ta có:

\(\widehat {AMB} + \widehat {AMC} = {180^o}\)( 2 góc kề bù)

\(\begin{array}{l} \Rightarrow \widehat {AMB} + {80^o} = {180^o}\\ \Rightarrow \widehat {AMB} = {100^o}\end{array}\)

Áp dụng định lí tổng ba góc trong một tam giác:

+) Trong tam giác AMB có:

\(\begin{array}{l}\widehat {ABC} + \widehat {MAB} + \widehat {AMB} = {180^O}\\ \Rightarrow \widehat {ABC} + {20^o} + {100^o} = {180^O}\\ \Rightarrow \widehat {ABC} = {60^o}\end{array}\)

+) Trong tam giác ABC có:
\(\begin{array}{l}\widehat {BAC} + \widehat {ACB} + \widehat {CBA} = {180^o}\\ \Rightarrow \widehat {BAC} + {60^o} + {60^o} = {180^o}\\ \Rightarrow \widehat {BAC} = {60^o}\end{array}\)

17 tháng 9 2023

Tam giác ABC và tam giác MNP bằng nhau (có ba cặp cạnh bằng nhau: AB = MN, BC = NP, AC = MP). Nên các cặp góc tương ứng trong hai tam giác này bằng nhau: \(\widehat A = \widehat M,\widehat B = \widehat N,\widehat C = \widehat P\).

Vậy \(\widehat A = \widehat M = 65^\circ \); \(\widehat B = \widehat N = 71^\circ \); \(\widehat C = \widehat P = 180^\circ  - 65^\circ  - 71^\circ  = 44^\circ \)(vì tổng ba góc trong một tam giác bằng 180°).

17 tháng 9 2023

\(\Delta ABC = \Delta MNP\) nên \(AC = MP\)và \(\widehat {MPN} = \widehat {ACB}\).

Vậy \(MP = 4\)cm và \(\widehat {ACB} = 45^\circ \).

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

Ta có hai góc \(\widehat {xOz}\) và \(\widehat {tOy}\) đối đỉnh nên \(\widehat {xOz} = \widehat {tOy} = 38^\circ \)

hai góc \(\widehat {xOt}\) và \(\widehat {yOz}\) đối đỉnh nên \(\widehat {xOt} = \widehat {yOz}\)

\(\widehat {xOz}\) và \(\widehat {xOt}\) bù nhau nên \(\widehat {xOt} = 180^\circ  - \widehat {xOz} = 180^\circ  - 38^\circ  = 142^\circ \)

Vậy \(\widehat {xOz} = \widehat {tOy} = 38^\circ \) và \(\widehat {xOt} = \widehat {yOz} = 142^\circ \)