K=1+1/3+1/6+1/10+...+1/45 so sánh K với 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ; K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)
\(=1+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{90}\)
\(=1+\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{9.10}\right)\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=1+1-\frac{1}{5}\)(nhân phá ngoặc)
\(=2-\frac{1}{5}\)< 2
Vậy K = \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{45}\)< 2
K CHO MK NHA
Giải
S=1+1/3+1/6+1/10+...+1/45
=> S=2/2+2/6+2/12+2/20+.......+2/90
=>S=2/1x2 + 2/2x3 +2/3x4+......+2/9x10
=>S=2x(1/1x2 + 1/2x3 +....+1/9x10)
=>S=2x(1/1 - 1/2 + 1/2 - 1/3 +......+ 1/9 - 1/10
=>S=2x(1/1 - 1/10)
Vì 1/1-1/10<1=>2x(1/1 - 1/10)>2x1=2
Hay S<2
.
\(S=1+\frac{1}{3}+...+\frac{1}{45}\)
\(\frac{S}{2}=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}=1-\frac{1}{2}+\frac{1}{2}-...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{S}{2}=1-\frac{1}{10}=\frac{9}{10}\)
\(\Rightarrow S=\frac{9.2}{10}=1.8<2\)
\(\Rightarrow S<2\)
Chúc bạn học tốt nha !!!
S = 2/2 + 2/6 + 2/12 + 2/20 + ... + 2/90
S = 2/1.2 + 2/2.3 + 2/3.4 + .. + 2/9.10
=> S = 2( 1/1.2 + 1/2.3 + ... + 1/9.10)
=> S = 2 ( 1/1 - 1/2 + 1/2 - 1/3 + .. + 1/9 - 1/10 )
=> S = 2 ( 1/1 - 1/10 )
Vì 1/1 - 1/10 < 1 => 2 ( 1/1 - 1/0 ) < 2.1 = 2
VẬy S < 2
tick đúng nha
=1/2.(1+1/3+1/6+...+1/45)
=1/2+1/6+1/12+1/20+...+1/90
=1/1.2+1/2.3+1/3.4+...+1/9.10
=(1/1-1/2)+(1/2-1/3)+...+(1/9-1/10)
=1-1/10
=9/10
dung do..k hegg
Ta co:\(A=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{14.14}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{1}{6.8}+...+\frac{2}{14.16}\left(1\right)\)
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)
\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}< \frac{8}{16}=\frac{1}{2}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow A< \frac{1}{2}\)
V...
Như vậy ta sẽ so sánh 1 và 1/3 + 1/6 + 1/10 +......+ 1/45
Ta có : 1/3 + 1/6 + 1/10 + .....+ 1/45 < 1/10 + 1/10 + 1/10 +......+ 1/10
Mà 1/10 + 1/10 + 1/10 + ....+ 1/10 = 8/10 < 1
Vậy S <2
\(K=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{1}{45}\)
\(K=1+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+\frac{1}{\frac{4\cdot5}{2}}+....+\frac{1}{\frac{9\cdot10}{2}}\)
\(K=1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{10}\right)\right]\)
\(K=1+\left[2\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)
\(K=1+\left(2\cdot\frac{2}{5}\right)=1+\frac{4}{5}=\frac{9}{5}\)
Vì \(\frac{9}{5}< 2\)\(\Rightarrow K< 2\)
\(K=1+\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\)
\(K=1+\left(\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(K=1+\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(K=1+\frac{2}{5}\)
\(K=\frac{7}{5}\)