Bài 3. Tìm số tự nhiên n có đúng 3 ước nguyên tố phân biệt. Biết rằng nmũ3 có đúng 1729 ước tự nhiên, hỏi nmũ2
có bao nhiêu ước tự nhiên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dạng phân tích của n= a^x.b^y(x,y khác 0)
n^2=a^2x.b^2y
có:(2x+1).(2y+1)=21
giả sử x<y =>x=1,y=3
n^3=a^3x.b^3y =>(3x+1).(3y+1)=(3.1+1).(3.3+1)=40
vậy n^3 có 40 ước
a3 có tất cả 40 ước
Theo đề bài ta có:
a = p1m . p2n \(⇒\) a2 = p12m . p22n.
Số ước của a2 là (2m + 1).(2n + 1) = 21 (ước)
\(⇒\) m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a3 = p13m . p23n có số ước là [(3m + 1) . (3n + 1)] (ước)
-Với m = 1 ; n = 3 thì a3 có (3.1 + 1) . (3.3 + 1) = 4 . 10 = 40 (ước)
-Với m = 3 ; n = 1 thì a3 có (3.3 + 1) . (3.1 + 1) = 10 . 4 = 40 (ước)
Giả sử số \(A\)phân tích thành thừa số nguyên tố được: \(A=p_1^{x_1}p_2^{x_2}...p_n^{x_n}\)
Khi đó tổng số ước của \(A\)là \(\left(x_1+1\right)\left(x_2+1\right)...\left(x_n+1\right)\).
Mà \(3=1.3\)do đó khi phân tích ra thừa số nguyên tố \(A\)chỉ có một ước nguyên tố duy nhất, số mũ của nó là \(3-1=2\).
Khi đó \(A=p^2\).
Do đó ta có đpcm.
Dạng phân tích ra thừa số nguyên tố của n là n=ax.by(x ,y khác 0)
Ta có :n2=a2x.b3y có (2x+1)(2y+1)ước số nên (2x+1)(2y+1)=21
Gỉả sử x bé hơn hoặc bằng y,ta được x=1 và y=3
n3=a3x.b3ycó (3x+1)(3y+1) ước ,tức là có 4.10=40 (ước)
Nga này
Chắc là tớ làm đúng .Cậu cứ đọc qua đi ,nếu thấy đúng thì chép vào và nhớ chọn đúng nge chưa?
Gọi số phải tìm là n; số chính phương đó là a; gọi b là số tự nhiên mà n là lập phương của nó.
Ta thấy n chia hết cho 2 và 3 (vì số chính phương hay lập phương của một số tự nhiên đều là số tự nhiên) nên để n nhỏ nhất, ta chọn n = 2x.3y (x và y khác 0).
n : 2 = 2x.3y : 2 = 2x-1.3y = a2 suy ra x - 1 và y đều chia hết cho 2 hay đều là số chẵn.
n : 3 = 2x.3y : 3 = 2x.3y-1 = b3 suy ra x và y - 1 đều chia hết cho 3.
Từ x - 1 chia hết cho 2 và x chia hết cho 3, để nhỏ nhất ta chọn x = 3
Từ y chia hết cho 2 và y - 1 chia hết cho 3, để nhỏ nhất ta chọn y = 4
Vậy n = 23.34 = 648
Số cần tìm là 648.
Phân tích n thành thừa số nguyên tố: n = p(1)n(1).p(2)n(2).p(3)n(3)
Do đó n3 = p(1)3n(1).p(2)3n(2).p(3)3n(3)
Số ước tự nhiên của n3 là [3n(1) + 1][3n(2) + 1][3n(3) + 1] = 1729.
Phân tích 1729 thành thừa số nguyên tố: 1729 = 7.13.19
Không mất tính tổng quát, ta coi vai trò của n(1); n(2) và n(3) là như nhau. Khi đó
3n(1) = 7 - 1 = 6, suy ra n(1) = 6 : 3 = 2
3n(2) = 13 - 1 = 12, suy ra n(2) = 12 : 3 = 4
3n(3) = 19 - 1 = 18, suy ra n(3) = 18 : 3 = 6
Do đó n = p(1)2.p(2)4.p(3)6, suy ra n2 = p(1)4.p(2)8.p(3)12
Vậy số ước tự nhiên của n2 là: (4 + 1)(8 + 1)(12 + 1) = 585 (ước tự nhiên)