K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có: \(\widehat {DAB} = \widehat {CBA}\)

Mà \(\widehat {DAB} +\widehat {HAD} =180^0; \widehat {CBA}= \widehat {KBC}\) (2 góc kề bù)

\(\Rightarrow \widehat {HAD} = \widehat {KBC}\) 

Mà tổng ba góc trong tam giác bằng 180° và \(\widehat {AHD} = \widehat {BKC} = 90^\circ ,\widehat {HAD} = \widehat {KBC}\) nên \(\widehat {ADH} = \widehat {BCK}\).

Xét tam giác AHD và tam giác BKC có:

     \(\widehat {AHD} = \widehat {BKC}\);

     HD = KC;

     \(\widehat {ADH} = \widehat {BCK}\).

Vậy \(\Delta AHD = \Delta BKC\)(g.c.g) nên AD = BC ( 2 cạnh tương ứng)

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)      Xét \(\Delta ABD\) và \(\Delta CBD\)có:

DA=DC(gt)

BD chung

BA=BC

Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)

b)     Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)

Theo định lí tổng ba góc trong tam giác BCD, ta có:

\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)

Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)

\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét hai tam giác vuông DAB và CBA: AC = BD; AB chung.

Nên \(\Delta DAB = \Delta CBA\) (cạnh huyền - cạnh góc vuông)

Nên AD = BC ( 2 cạnh tương ứng)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Xét hai tam giác vuông ABC và ADC có: AB = AD, AC chung.

Nên \(\Delta ABC = \Delta ADC\) (cạnh huyền - cạnh góc vuông) nên \(\widehat {ACB} = \widehat {ACD}\) (2 góc tương ứng)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a)     Ta có: \(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right)\)

Mà \(BC \in \left( {OBC} \right) \Rightarrow OA \bot BC\)

b)    Ta có \(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right)\)

Mà \(CA \in \left( {OAC} \right) \Rightarrow CA \bot OB\)

c)     Ta có \(\left. \begin{array}{l}OC \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OC \bot \left( {OAB} \right)\)

Mà \(AB \in \left( {OAB} \right) \Rightarrow AB \bot OC\)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có: tổng ba góc trong một tam giác bằng 180° và \(\widehat N = \widehat P = 90^\circ ,\widehat {PMQ} = \widehat {NQM}\) nên \(\widehat {PQM} = \widehat {NMQ}\).

Xét hai tam giác MNQ và QPM có:

\(\widehat {NQM}=\widehat {PMQ}\)

MQ chung

\(\widehat {NMQ}=\widehat {PQM}\)

Vậy \(\Delta MNQ = \Delta QPM\)(g.c.g). Do đó MN = QP, MP = QN ( 2 cạnh tương ứng)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

 

\(\Delta SAB,\Delta SAC\) đều \( \Rightarrow AB = {\rm{A}}C = a\)

\(BC = \sqrt {S{B^2} + S{C^2}}  = a\sqrt 2 \)

\( \Rightarrow \Delta ABC\) vuông cân tại \(A\)

\(AJ\) là trung tuyến của tam giác \(ABC\)\( \Rightarrow AJ = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\)

\(\Delta SBC\) vuông cân tại \(S\) có \(SJ\) là trung tuyến

\( \Rightarrow SJ = \frac{1}{2}BC = \frac{{a\sqrt 2 }}{2}\)

\(IJ\) là trung tuyến của tam giác \(SAJ\)\( \Rightarrow IJ = \frac{{\sqrt {2\left( {A{J^2} + S{J^2}} \right) - S{A^2}} }}{2} = \frac{a}{2}\)

\(AI = \frac{1}{2}SA = \frac{a}{2};BJ = \frac{1}{2}BC = \frac{a}{2}\)

Xét tam giác \(AIJ\) có: \(A{I^2} + I{J^2} = A{J^2}\)

\( \Rightarrow \Delta AIJ\) vuông tại \(I\)\( \Rightarrow AI \bot IJ \Rightarrow SA \bot IJ\)

\(\Delta SAB\) đều \( \Rightarrow BI = \sqrt {A{B^2} - A{I^2}}  = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác \(BIJ\) có: \(B{J^2} + I{J^2} = B{I^2}\)

\( \Rightarrow \Delta BIJ\) vuông tại \(J\)\( \Rightarrow BJ \bot IJ \Rightarrow BC \bot IJ\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

Xét tam giác \(SAC\) có:

\(AC = \sqrt {S{A^2} + S{C^2} - 2.SA.SC.\cos \widehat {ASC}}  = a\sqrt 3 \)

\(SI\) là trung tuyến \( \Rightarrow SI = \frac{{\sqrt {2\left( {S{A^2} + S{C^2}} \right) - A{C^2}} }}{2} = \frac{a}{2}\)

Ta có: \(S{I^2} + A{I^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = {a^2} = S{A^2}\)

\( \Rightarrow \Delta SAI\) vuông tại \(I \Rightarrow SI \bot AC\)

Xét tam giác \(SAB\) vuông tại \(S\) có: \(AB = \sqrt {S{A^2} + S{B^2}}  = a\sqrt 2 \)

Xét tam giác \(SBC\) cân tại \(S\) có \(\widehat {BSC} = {60^ \circ }\) nên tam giác \(SBC\) đều. Vậy  \(BC = a\)

Xét tam giác \(ABC\) có: \(A{B^2} + B{C^2} = {\left( {a\sqrt 2 } \right)^2} + {a^2} = 3{a^2} = A{C^2}\)

\( \Rightarrow \Delta ABC\) vuông tại \(B \Rightarrow BI = \frac{1}{2}AC = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác \(SBI\) có: \(S{I^2} + B{I^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{a\sqrt 3 }}{2}} \right)^2} = {a^2} = S{B^2}\)

\( \Rightarrow \Delta SBI\) vuông tại \(I \Rightarrow SI \bot BI\)

Ta có:

\(\left. \begin{array}{l}SI \bot AC\\SI \bot BI\end{array} \right\} \Rightarrow SI \bot \left( {ABC} \right)\)

30 tháng 8 2021

Hình vẽ minh hoạ undefined

30 tháng 8 2021

a. Ta có: AD = AB 

=> \(\Delta ABD\) là tam giác cân

=> Góc ADB = góc ABD (1)

Mà góc ABD = góc BDC (so le trong) (2)

Từ (1) và (2), suy ra:

BD là tia phân giác của góc ADC

b. Nối AC

Xét 2 tam giác ABC và ABD có:

AD = BC (gt)

AB chung

=> \(\Delta ABD\sim\Delta ABC\) (1)

Ta có: AD = AB = BC (2)

Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)

=> Góc A = góc B

Ta có: AB//CD

=> Góc D + góc A = 90o (2 góc trong cùng phía)

Mà góc A = góc B

=> Góc C = góc D

=> ABCD là hình thang cân

30 tháng 9 2018

a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)

\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)

\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)

b,  \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)

Do đó: BI là tia p/g của \(\widehat{ABC}\)

Mà      CI là tia phân giác của \(\widehat{BCD}\)

          \(\widehat{ABC}+\widehat{BCD}=180^0\)

\(\Rightarrow\widehat{BIC}=90^0\)

c,  \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)

     \(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\)  (2)

Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)