K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

BC = B’C’ = 4 (đường chéo của 4 ô vuông).

Tam giác ABC và tam giác A’B’C’ có: BC = B’C’, AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(c.g.c)

17 tháng 9 2023

Vì \(\widehat A = \widehat {A'},\widehat C = \widehat {C'}\)mà tổng ba góc trong một tam giác bằng 180° nên \(\widehat B = \widehat {B'}\).

Xét hai tam giác ABC và A’B’C’ có: \(\widehat A = \widehat {A'}\), AB = A’B’, \(\widehat B = \widehat {B'}\).

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Hai tam giác ABC và A’B’C’ có bằng nhau.

17 tháng 9 2023

Tổng ba góc trong một tam giác bằng 180°. Vậy trong tam giác A’B’C’ có \(\widehat {C'} = 180^\circ  - 70^\circ  - 60^\circ  = 50^\circ \).

Xét hai tam giác ABC và A’B’C’ có:

     \(\widehat B = \widehat {B'} = 60^\circ ;\)

     BC = B’C’ ( = 3 cm)

     \(\widehat C = \widehat {C'} = 50^\circ \)

Vậy \(\Delta ABC = \Delta A'B'C'\)(g.c.g) 

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

BC = B’C’ = 6 (ô vuông).

Tam giác ABC và A’B’C’ có các cặp cạnh tương ứng bằng nhau nên tam giác ABC bằng tam giác A’B’C’ (c.c.c)

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta thấy AC = 4 cm; A’C’ = 4 cm.

Vậy AC = A’C’.

17 tháng 9 2023

Xét hai tam giác vuông: ∆ABC và ∆A'B'C' có:

BC = B'C' = 5 cm

AB = A'B' = 3 cm

⇒ ∆ABC = ∆A'B'C' (cạnh huyền - cạnh góc vuông)

⇒ AC = A'C' (hai cạnh tương ứng)

NV
20 tháng 12 2020

\(A=180-\left(B+C\right)=40^0\)

\(b=\dfrac{a}{sinA}.sinB\approx212.3\left(cm\right)\)

\(c=\dfrac{a}{sinA}.sinC=179,4\left(cm\right)\)

\(R=\dfrac{a}{2sinA}=107\left(cm\right)\)

\(S=\dfrac{abc}{4R}=12235,8\left(cm^2\right)\)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Vì \(ED//AB \Rightarrow \Delta DEC\backsim\Delta ABC\) (định lí)

b) Vì \(ED//AB \Rightarrow \widehat {CDE} = \widehat {CAB}\) (hai góc đồng vị)

Mà \(\widehat {CAB} = \widehat {A'}\). Do đó, \(\widehat {CDE} = \widehat {B'A'C'}\).

Xét tam giác \(A'B'C'\) và tam giác \(DEC\) ta có:

\(\widehat {B'A'C'} = \widehat {CDE}\) (chứng minh trên)

\(A'C' = CD\) (giải thuyết)

\(\widehat {C'} = \widehat C\) (giả thuyết)

Do đó, \(\Delta A'B'C' = \Delta DEC\) (g.c.g)

c) Vì tam giác \(\Delta A'B'C'\backsim\Delta DEC\) (tính chất)

Mà \(\Delta DEC\backsim\Delta ABC\) nên \(\Delta ABC\backsim\Delta A'B'C'\).

16 tháng 12 2021

Chọn A

16 tháng 12 2021

A

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

-          Độ dài các cạnh tương ứng của 2 tam giác ABC và A’B’C’ bằng nhau.

-          Hai tam giác ABC và A'B'C' có bằng nhau.

-          Độ dài các cạnh AB' và AC' của hai tam giác em vừa vẽ có bằng các cạnh AB' và AC' của hai tam giác các bạn khác vẽ.

-           Hai tam giác em vừa vẽ có bằng hai tam giác mà các bạn khác vẽ.