xét tính tăng, giảm của các dãy số sau
\(u_n=\dfrac{n+2}{n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(u_{n+1}-u_n\)
\(=2-3\left(n+1\right)-2+3n\)
=-3n-3+3n
=-3<0
=>Đây là dãy giảm
b: \(u_{n+1}-u_n\)
\(=\dfrac{n+2}{n+1}-\dfrac{n+1}{n}\)
\(=\dfrac{n^2+2n-n^2-2n-1}{n\left(n+1\right)}=\dfrac{-1}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
c: \(u_{n+1}-u_n==\dfrac{1}{n+2}-\dfrac{1}{n+1}\)
\(=\dfrac{n+1-n-2}{\left(n+1\right)\left(n+2\right)}=\dfrac{-1}{\left(n+1\right)\left(n+2\right)}< 0\)
=>Đây là dãy giảm
d: \(\dfrac{u_{n+1}}{u_n}=\dfrac{2^{n+1}}{2^n}=2>1\)
=>Đây là dãy tăng
a) Dãy số un = 2n - 1: Đây là một dãy số tăng với hệ số tăng là 2.
b) Dãy số un = 3 - 2n: Đây là một dãy số giảm với hệ số giảm là 2.
c) Dãy số un = n + 2n: Đây là một dãy số tăng với hệ số tăng là 3.
d) Dãy số un = 2n: Đây là một dãy số tăng với hệ số tăng là 2.
e) Dãy số un = 3n: Đây là một dãy số tăng với hệ số tăng là 3.
a: \(u_{n+1}-u_n=2\left(n+1\right)-1-2n+1\)
\(=2n+2-2n=2>0\)
=>Đây là dãy tăng
b: \(u_{n+1}-u_n=-2\left(n+1\right)+3+2n-3=-2n-2+2n=-2< 0\)
=>Đây là dãy giảm
d: \(u_{n+1}-u_n=\dfrac{2}{n+1}-\dfrac{2}{n}=\dfrac{2n-2n-2}{n\left(n+1\right)}=-\dfrac{2}{n\left(n+1\right)}< 0\)
=>Đây là dãy giảm
e: \(\dfrac{u_{n+1}}{u_n}=\dfrac{3^{n+1}}{3^n}=3>1\)
=>Đây là dãy tăng
Lời giải:
Với $n$ lẻ bất kỳ:
$u_n<0; u_{n+1>0; u_{n+2}< 0$
$\Rightarrow u_n< u_{n+1}> u_{n+2}$ với mọi $n$ lẻ bất kỳ
Do đó dãy không tăng cũng không giảm.
Lời giải:
Thấy rằng $u_n>0$ với mọi $n\in\mathbb{N}^*$
\(\frac{u_{n+1}}{u_n}=\frac{\sqrt{n+12}}{n+1}: \frac{\sqrt{n+11}}{n}=\frac{\sqrt{n^2(n+12)}}{\sqrt{(n+1)^2(n+11)}}=\sqrt{\frac{n^3+12n^2}{n^3+13n^2+23n+11}}<1\) với mọi $n\in\mathbb{N}^*$
$\Rightarrow u_{n+1}< u_n$ với mọi $n\in\mathbb{N}^*$
$\Rightarrow (u_n)$ là dãy giảm.
Ta sẽ chứng minh \(\left(u_n\right)\) giảm, tức \(u_{n+1}< u_n\) (*) bằng phương pháp quy nạp.
Với n = 1: \(u_2-u_1=\dfrac{u_1^2+1}{4}-u_1=\dfrac{2^2+1}{4}-2=\dfrac{-3}{4}< 0\)
Giả sử (*) đúng với n = k (\(k\in N;k>1\)), tức \(u_{k+1}< u_k\)
Ta sẽ chứng minh (*) đúng với n = k + 1, tức \(u_{k+2}< u_{k+1}\)
\(u_{k+2}=\dfrac{\left(u_{k+1}\right)^2+1}{4}< \dfrac{u_k^2+1}{4}=u_{k+1}\)
Theo nguyên lí quy nạp, ta được đpcm.
Vậy \(\left(u_n\right)\) giảm.
\(u_n=\dfrac{n+2}{n}\)
\(u_{n+1}=\dfrac{n+3}{n+1}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{n+3}{n+1}-\dfrac{n+2}{n}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{n\left(n+3\right)-\left(n+1\right)\left(n+2\right)}{n\left(n+1\right)}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-\left(n^2+3n+2\right)}{n\left(n+1\right)}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{n^2+3n-n^2-3n-2}{n\left(n+1\right)}\)
\(\Rightarrow u_{n+1}-u_n=\dfrac{-2}{n\left(n+1\right)}< 0\)
Vậy dãy số \(u_n\) đã cho là dãy giảm