a) Thực hiện phép trừ trong mỗi trường hợp sau: \(2{x^2} - 6{x^2}\); \(a{x^k} - b{x^k}\)(k \(\in\) N*).
b) Nêu quy tắc trừ hai đơn thức có cùng số mũ của biến.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(5{x^2} + 7{x^2} = (5 + 7){x^2} = 12{x^2}\); \(a{x^2} + b{x^2} = (a + b){x^2}\).
b) Muốn cộng hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính tổng của các hệ số có trong đơn thức.
cái kia bị lỗi. cái này đúng nha
\(\frac{x^4-a^3x}{x^2+xa+a^2}=\frac{x\left(x^3-a^3\right)}{x^2+xa+a^2}=\frac{x\left(x-a\right)\left(x^2+xa+a^2\right)}{x^2+xa+a^2}=x\left(x-a\right)\)
a) Không vì hạng tử \( 9x{y^4}\) có số mũ của biến x nhỏ hơn số mũ của biến x trong B.
b) Có. \(\begin{array}{l}A:B = \left( {9x{y^4} - 12{x^2}{y^3} + 6{x^3}{y^2}} \right):\left( { - 3x{y^2}} \right)\\ = 9x{y^4}:\left( { - 3x{y^2}} \right) - 12{x^2}{y^3}:\left( { - 3x{y^2}} \right) + 6{x^3}{y^2}:\left( { - 3x{y^2}} \right)\\ = - 3{y^2} + 4xy - 2{x^2}\end{array}\)
A. Phép cộng luôn luôn thực hiện được trong tập hợp số tự nhiên.
a) \(2{x^2} - 6{x^2} = (2 - 6){x^2} = - 4{x^2}\); \(a{x^k} - b{x^k} = (a - b){x^k}\).
b) Muốn trừ hai đơn thức có cùng số mũ của biến, ta giữ nguyên biến và tính hiệu của các hệ số có trong đơn thức.