Thảo tung hai đồng xu giống nhau 100 lần và ghi lại kết quả ở bảng sau:
Tính xác suất thực nghiệm của biến cố “Hai đồng xu đều xuất hiện mặt sấp sau 100 lần tung”.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Biến cố A là biến cố chắc chắn xảy ra vì hai lần tung đều xuất hiện mặt sấp.
- Biến cố B là biến cố chắc chắn xảy ra vì 2 lần đều xuất hiện mặt sấp giống nhau.
- Biến cố C là biến cố không thể vì cả 2 lần đều xuất hiện mặt sấp nên không thể ra mặt ngửa.
+) Không gian mẫu của phép thử là: \(\Omega {\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}.\) Vậy \(n\left( \Omega \right) = 4\)
+) Các kết quả thuận lợi cho biến cố A là: \(A{\rm{ }} = {\rm{ }}\left\{ {SS;{\rm{ }}NN} \right\}\). Vậy \(n\left( A \right) = 2\)
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
Xác suất thực nghiệm của biến cố ngẫu nhiên "Mặt xuất hiện của đồng xu là mặt N" là \(\dfrac{8}{15}\)
Xác suất thực nghiệm này bằng với xác suất của biến cố ngẫu nhiên ở trên
a) Nếu tung một đồng xu 22 lần liên tiếp; có 13 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt N bằng: \(\dfrac{13}{22}\)
b) Nếu tung một đồng xu 25 lần liên tiếp; có 11 lần xuất hiện mặt S thì xác suất thực nghiệm xuất hiện mặt S bằng: \(\dfrac{11}{25}\)
c) Nếu tung một đồng xu 30 lần liên tiếp; có 14 lần xuất hiện mặt N thì xác suất thực nghiệm xuất hiện mặt S bằng: \(\dfrac{30-14}{30}=\dfrac{8}{15}\)
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Có ít nhất một lần xuất hiện mặt sấp”
+) Các kết quả thuận lợi cho biến cố A là: \(SS;{\rm{ }}SN;{\rm{ }}NS\)tức là \(A = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS} \right\}\). Vậy \(n\left( A \right) = 3\).
+) Xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{3}{4}\)
a)
- Bạn Hùng đã tung đồng xu 10 lần. Kết quả của lần thứ nhất là mặt sấp, lần thứ năm là mặt ngửa.
- Có 2 kết quả khác nhau có thể xảy ra, đó là kết quả đồng xu hiện ra mặt sấp hoặc đồng xu hiện ra mặt ngửa.
b)
- Kết quả lần thứ 5 là số 4, lần thứ 6 là số 1.
- Có 4 kết quả khác nhau có thể xảy ra, đó là các kết quả 1,2,3,4.
+) Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = {\rm{ }}\left\{ {SS;{\rm{ }}SN;{\rm{ }}NS;{\rm{ }}NN} \right\}\). Vậy \(n\left( \Omega \right) = 4\)
+) Gọi A là biến cố “Kết quả của hai lần tung là khác nhau”.
Các kết quả thuận lợi cho biến cố A là: \(SN;{\rm{ }}NS\)tức là \(A = \left\{ {SN;NS} \right\}\).Vậy \(n\left( A \right) = 2\)
+) Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{2}{4} = \frac{1}{2}\)
a: Số lần xuất hiện mặt S: 9
Số lần xuất hiện mặt N: 11
b: P(S)=9/20
P(N)=11/20
Xác suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{{14}}{{100}} = \frac{7}{{50}}\).
Vậy suất thực nghiệm của biến cố hai đồng xu đều xuất hiện mặt sấp sau 100 lần gieo là \(\frac{7}{{50}}\).