Một hộp chứa 10 tấm thẻ cùng loại được đánh số từ 4 đến 13. Hà lấy ra ngẫu nhiên 1 thẻ từ hộp. Xác suất để thẻ chọn ra ghi số nguyên tố là
A. 0,2.
B. 0,3.
C. 0,4 .
D. 0,5.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Các tấm thẻ được đánh số chẵn là: thẻ số 2; thẻ số 8; thẻ số 32.
Xác suất để biến cố \(A\) xảy ra là \(\frac{3}{6} = \frac{1}{2}\)
- Các tấm thẻ được đánh số nguyên tố là: thẻ số 2; thẻ số 3; thẻ số 5; thể số 13.
Xác suất để biến cố \(B\) xảy ra là \(\frac{4}{6} = \frac{2}{3}\)
- Không có tấm thẻ nào được đánh số chính phương.
Do đó, xác suất để biến cố \(C\) xảy ra bằng 0.
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.
a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”
\( \Rightarrow A = C \cup D\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách
\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”
\( \Rightarrow B = C \cup E\)
Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách
Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách
\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)
Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)
Gọi số thẻ ghi số lẻ trong hộp là \(n\). Khi đó, xác suất tấm thẻ lấy ra ghi số lẻ là \(\frac{n}{{10}}\).
Số thẻ ghi số chẵn trong hộp là \(10 - n\). Khi đó, xác suất tấm thẻ lấy ra ghi số chẵn là \(\frac{{10 - n}}{{10}}\).
Vì xác suất lấy được thẻ chẵn gấp 4 lần xác suất lấy được thẻ lẻ nên \(\frac{{10 - n}}{{10}} = 4.\frac{n}{{10}} \Leftrightarrow 10 - n = 4n \Leftrightarrow 5n = 10 \Leftrightarrow n = 2\)
Vậy số thẻ ghi số lẻ trong hộp là 2 thẻ.
Khi lấy 1 tấm thẻ ra khỏi hộp thì số chỉ trên tấm thẻ có thể là: thẻ 3; thẻ 4; thẻ 5; thẻ 6; thẻ 7; thẻ 8; thẻ 9; thẻ 10; thẻ 11; thẻ 12.
Các kết quả cho biến cố \(A\): “ Số ghi trên thẻ lấy ra chia hết cho 3” là thẻ 3; thẻ 3; thẻ 9; thẻ 12.
Các kết quả cho biến cố \(B\): “ Số ghi trên thẻ lấy ra chia hết cho 6” là thẻ 6; thẻ 12.
a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`
P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`
b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".
$HaNa$
1.
\(\left|\Omega\right|=15\)
a, \(P\left(A\right)=\dfrac{7}{15}\)
b, \(P\left(B\right)=\dfrac{2}{5}\)
c, \(P\left(C\right)=\dfrac{3}{5}\)
2.
\(\left|\Omega\right|=C^5_{18}\)
a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)
\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)
b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.
TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng
\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.
\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)
\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)
c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.
\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)
\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)
\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)
HD: Số phần tử của không gian mẫu là: Ω = C 11 4
Gọi A là biến cố: “Tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”
Khi đó số tấm lẻ được chọn là số lẻ.
Trong 11 số từ 1 đến 11 có 6 số lẻ và 5 số chẵn.
Đáp án đúng là C
Các thẻ được đánh số nguyên tối là thẻ số 5; thẻ số 7; thẻ số 11; thẻ số 13.
Xác suất để thẻ chọn ra ghi số nguyên tố là \(\frac{4}{{10}} = \frac{2}{5} = 0,4\).