K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Đáp án đúng là C

Các thẻ được đánh số nguyên tối là thẻ số 5; thẻ số 7; thẻ số 11; thẻ số 13.

Xác suất để thẻ chọn ra ghi số nguyên tố là \(\frac{4}{{10}} = \frac{2}{5} = 0,4\).

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

- Các tấm thẻ được đánh số chẵn là: thẻ số 2; thẻ số 8; thẻ số 32.

Xác suất để biến cố \(A\) xảy ra là \(\frac{3}{6} = \frac{1}{2}\)

- Các tấm thẻ được đánh số nguyên tố là: thẻ số 2; thẻ số 3; thẻ số 5; thể số 13.

Xác suất để biến cố \(B\) xảy ra là \(\frac{4}{6} = \frac{2}{3}\)

- Không có tấm thẻ nào được đánh số chính phương.

Do đó, xác suất để biến cố \(C\) xảy ra bằng 0.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 50 thẻ từ hộp có \({C}_{50}^2 = 1225\) cách.

a) Gọi \(C\) là biến cố “2 thẻ lấy ra là số chẵn”, \(D\) là biến cố “2 thẻ lấy ra là số lẻ”

\( \Rightarrow A = C \cup D\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ chẵn có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( C \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( C \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Lấy ngẫu nhiên đồng thời 2 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^2 = 300\) cách

\( \Rightarrow n\left( D \right) = 300 \Rightarrow P\left( C \right) = \frac{{n\left( D \right)}}{{n\left( \Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(D\) là hai biến cố xung khắc nên \(P\left( A \right) = P\left( C \right) + P\left( D \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

b) Gọi \(E\) là biến cố “1 thẻ chia hết cho 4, 1 thẻ là số lẻ”

\( \Rightarrow B = C \cup E\)

Lấy ngẫu nhiên 1 thẻ trong tổng số 12 thẻ chia hết cho 4 có \({C}_{12}^1 = 12\) cách

Lấy ngẫu nhiên 1 thẻ trong tổng số 25 thẻ lẻ có \({C}_{25}^1 = 25\) cách

\( \Rightarrow n\left( E \right) = 12.25 = 300 \Rightarrow P\left( E \right) = \frac{{n\left( E \right)}}{{n\left(\Omega \right)}} = \frac{{300}}{{1225}} = \frac{{12}}{{49}}\)

Vì \(C\) và \(E\) là hai biến cố xung khắc nên \(P\left( B \right) = P\left( C \right) + P\left( E \right) = \frac{{12}}{{49}} + \frac{{12}}{{49}} = \frac{{24}}{{49}}\)

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Gọi số thẻ ghi số lẻ trong hộp là \(n\). Khi đó, xác suất tấm thẻ lấy ra ghi số lẻ là \(\frac{n}{{10}}\).

Số thẻ ghi số chẵn trong hộp là \(10 - n\). Khi đó, xác suất tấm thẻ lấy ra ghi số chẵn là \(\frac{{10 - n}}{{10}}\).

Vì xác suất lấy được thẻ chẵn gấp 4 lần xác suất lấy được thẻ lẻ nên \(\frac{{10 - n}}{{10}} = 4.\frac{n}{{10}} \Leftrightarrow 10 - n = 4n \Leftrightarrow 5n = 10 \Leftrightarrow n = 2\)

Vậy số thẻ ghi số lẻ trong hộp là 2 thẻ.

HQ
Hà Quang Minh
Giáo viên
15 tháng 9 2023

Khi lấy 1 tấm thẻ ra khỏi hộp thì số chỉ trên tấm thẻ có thể là: thẻ 3; thẻ 4; thẻ 5; thẻ 6; thẻ 7; thẻ 8; thẻ 9; thẻ 10; thẻ 11; thẻ 12.

Các kết quả cho biến cố \(A\): “ Số ghi trên thẻ lấy ra chia hết cho 3” là thẻ 3; thẻ 3; thẻ 9; thẻ 12.

Các kết quả cho biến cố \(B\): “ Số ghi trên thẻ lấy ra chia hết cho 6” là thẻ 6; thẻ 12.

22 tháng 8 2023

a) Tập hợp mô tả biến cố AB:
`AB: { (1, 5), (2, 4), (3, 3) }`

P(AB) = số phần tử trong AB / số phần tử trong không gian mẫu
`P(AB) = 3 / (3 * 5) = 3/15 = 1/5`

b) Một biến cố khác rỗng và xung khắc với cả hai biến cố A và B là biến cố "Tổng các số ghi trên 2 thẻ lớn hơn 6".

$HaNa$

16 tháng 1 2019

Chọn C

6 tháng 12 2021

1.

\(\left|\Omega\right|=15\)

a, \(P\left(A\right)=\dfrac{7}{15}\)

b, \(P\left(B\right)=\dfrac{2}{5}\)

c, \(P\left(C\right)=\dfrac{3}{5}\)

6 tháng 12 2021

2.

\(\left|\Omega\right|=C^5_{18}\)

a, \(\left|\Omega_A\right|=C^5_5+C^5_6+C^5_7\)

\(P\left(B\right)=\dfrac{C^5_5+C^5_6+C^5_7}{C^5_{18}}=\dfrac{1}{306}\)

b, TH1: 2 bi đỏ, 1 bi xanh, 2 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^1_5.C^2_7\) cách lấy.

TH2: 2 bi đỏ, 2 bi xanh, 1 bi vàng

\(\Rightarrow\) Có \(C^2_6.C^2_5.C^1_7\) cách lấy.

\(\Rightarrow\left|\Omega_C\right|=C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7\)

\(\Rightarrow P\left(C\right)=\dfrac{C^2_6.C^1_5.C^2_7+C^2_6.C^2_5.C^1_7}{C^5_{18}}=\dfrac{10}{51}\)

c, \(\overline{D}\) là biến cố không lấy ra bi xanh nào.

\(\left|\Omega_{\overline{D}}\right|=C^5_{13}\)

\(\Rightarrow P\left(\overline{D}\right)=\dfrac{C^5_{13}}{C^5_{18}}=\dfrac{143}{952}\)

\(\Rightarrow P\left(D\right)=1-\dfrac{143}{952}=\dfrac{809}{952}\)

25 tháng 1 2018

Đáp án A.

 

4 tháng 6 2017

HD: Số phần tử của không gian mẫu là:  Ω = C 11 4

Gọi A là biến cố: “Tổng số ghi trên 4 tấm thẻ ấy là một số lẻ”

Khi đó số tấm lẻ được chọn là số lẻ.

Trong 11 số từ 1 đến 11 có 6 số lẻ và 5 số chẵn.