K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

a/ VÌ \(\Delta ABC\) cân tại A nên ^B=^C

Mà ^B1=^B2 ;^C1=^C2(VÌ BE và CD là tia phân giác của ^C,^B)

Do đó ^b1=^c1

xét \(\Delta\)ABE và\(\Delta\)ACD

AB=AC(tam giác cân)

^BAE=^CAD

^B1=^C1

\(\Rightarrow\Delta\)ABE=\(\Delta\)ACD

a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: Xét ΔAHB vuông tại H có HE là đường cao

nen AE*AB=AH^2

Xét ΔAHC vuông tạiH có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

c: góc MEB=góc AEF=góc AHF=góc MCF

Xét ΔMEB và ΔMCF có

góc MEB=góc MCF

góc M chung

=>ΔMEB đồng dạng với ΔMCF

=>ME/MC=MB/MF

=>ME/MB=MC/MF

=>ΔMEC đồng dạng với ΔMBF

=>góc MCE=góc MFB