K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(BC\subset\left(SBC\right)\)

\(BC\subset\left(ABC\right)\)

Do đó: \(\left(SBC\right)\cap\left(ABC\right)=BC\)

b: \(I\in BC\subset\left(SBC\right)\)

\(I\in\left(SAI\right)\)

Do đó: \(I\in\left(SBC\right)\cap\left(SAI\right)\)

mà S thuộc (SBC) giao (SAI)

nên (SBC) giao (SAI)=SI

c: Trong mp(SBC), Gọi M là giao của BK với SI

\(M\in BK\subset\left(ABK\right)\)

\(M\in SI\subset\left(SAI\right)\)

=>\(M\in\left(SAI\right)\cap\left(ABK\right)\)

mà A thuộc (SAI) giao (ABK)

nên (SAI) giao (ABK)=AM

 

28 tháng 8 2023

a) Để tìm giao điểm của đường thẳng SB và mặt phẳng (ABC), chúng ta cần tìm điểm giao nhau của đường thẳng SB và mặt phẳng (ABC). Điểm này sẽ nằm trên cả hai đường thẳng SB và mặt phẳng (ABC). Để tìm điểm này, ta có thể sử dụng phương pháp giao điểm giữa đường thẳng và mặt phẳng. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng SB, có thể được xác định bằng cách sử dụng hai điểm S và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng SB và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

b) Tương tự, để tìm giao điểm của đường thẳng HB và mặt phẳng (SAC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng HB, có thể được xác định bằng cách sử dụng hai điểm H và B. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HB và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

c) Để tìm giao điểm của đường thẳng BK và mặt phẳng (SAC), ta cũng có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (SAC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng SA và SC, ví dụ như vector SA và vector SC. Sau đó, ta tìm phương trình đường thẳng BK, có thể được xác định bằng cách sử dụng hai điểm B và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng BK và phương trình mặt phẳng (SAC) để tìm điểm giao nhau.

d) Tương tự, để tìm giao điểm của đường thẳng HK và mặt phẳng (ABC), ta có thể sử dụng phương pháp tương tự như trên. Đầu tiên, ta tìm vector pháp tuyến của mặt phẳng (ABC), bằng cách lấy tích vector của hai vector chỉ phương của hai đoạn thẳng AB và AC, ví dụ như vector AB và vector AC. Sau đó, ta tìm phương trình đường thẳng HK, có thể được xác định bằng cách sử dụng hai điểm H và K. Cuối cùng, ta giải hệ phương trình giữa phương trình đường thẳng HK và phương trình mặt phẳng (ABC) để tìm điểm giao nhau.

loading...  loading...  

11 tháng 9 2023

Để tìm giao điểm của SB và mp(ABC), ta cần tìm giao điểm của hai đường thẳng SB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Vì I là trung điểm BC, ta có thể xác định được mặt phẳng ABC. Sau đó, ta tìm giao điểm của đường thẳng SB và mặt phẳng ABC.

Để tìm giao điểm của HB và mp(SAC), ta cần tìm giao điểm của hai đường thẳng HB và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng HB và mặt phẳng SAC.

Để tìm giao điểm của BK và mp(SAC), ta cần tìm giao điểm của hai đường thẳng BK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng SAC. Tương tự như trên, ta xác định được mặt phẳng SAC và sau đó tìm giao điểm của đường thẳng BK và mặt phẳng SAC.

Để tìm giao điểm của HK và mp(ABC), ta cần tìm giao điểm của hai đường thẳng HK và đường thẳng chứa điểm trung điểm I và vuông góc với mặt phẳng ABC. Tương tự như trên, ta xác định được mặt phẳng ABC và sau đó tìm giao điểm của đường thẳng HK và mặt phẳng ABC.

a: \(N\in NP\)

\(N\in\left(NMQ\right)\)

Do đó: \(N=NP\cap\left(MNQ\right)\)

b: Trong mp(PNQ), Gọi E là giao của NQ và HK

mà \(NQ\subset\left(MNQ\right)\)

nên \(E=HK\cap\left(MNQ\right)\)

c; \(K\in\left(MHK\right)\)

\(K\in QP\subset\left(NPQ\right)\)

Do đó: \(K\in\left(MHK\right)\cap\left(NPQ\right)\)

\(H\in NP\subset\left(NPQ\right)\)

\(H\in\left(MHK\right)\)

Do đó; \(H\in\left(MHK\right)\cap\left(NPQ\right)\)

=>\(\left(MHK\right)\cap\left(NPQ\right)=KH\)

loading...  loading...  

1:

a: \(S\in SA\)

\(S\in SB\subset\left(SBC\right)\)

Do đó: \(S=SA\cap\left(SBC\right)\)

b: Chọn mp(SAB) có chứa SM

\(AB\subset\left(ABC\right)\)

\(AB\subset\left(SAB\right)\)

Do đó: \(AB=\left(SAB\right)\cap\left(ABC\right)\)

\(M\in AB\)

=>SM giao AB=M

=>\(M=SM\cap\left(ABC\right)\)

c: Chọn mp(BAC) có chứa MN

\(BC\subset\left(BAC\right)\)

\(BC\subset\left(SBC\right)\)

Do đó: (BAC) giao (SBC)=BC

mà \(BC\cap MN=N\)

nên \(N=MN\cap\left(SBC\right)\)

d: Chọn mp(ABC) có chứa MN

\(AC\subset\left(SAC\right)\)

\(AC\subset\left(ABC\right)\)

Do đó: \(AC=\left(SAC\right)\cap\left(ABC\right)\)

Gọi giao của MN và AC là E

=>\(E=MN\cap\left(SAC\right)\)

2:

a: \(B\in SB\)

\(B\in\left(ABC\right)\)

Do đó: \(B=SB\cap\left(ABC\right)\)

b: Chọn mp(SAB) có chứa BH

\(SA\subset\left(SAB\right)\)

\(SA\subset\left(SAC\right)\)

Do đó: \(\left(SAB\right)\cap\left(SAC\right)=SA\)

Gọi E là giao của BH và SA

=>E là giao điểm cần tìm

c: Chọn mp(SBC) có chứa BK

\(SC\subset\left(SBC\right)\)

\(SC\subset\left(SAC\right)\)

Do đó: \(\left(SBC\right)\cap\left(SAC\right)=SC\)

Gọi F là giao của BK với SC

=>F là giao điểm cần tìm

d: Trong mp(SAC), gọi O là giao của HK với AC

mà \(AC\subset\left(ABC\right)\)

nên \(O=HK\cap\left(ABC\right)\)

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

10 giây suy nghĩ cấm tìm trên mạng

hồi sáng tớ đố bài này rùi dễ có trên mạng mà cấm tìm đó

4
4 tháng 10 2016

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

4 tháng 10 2016

hại não o_o

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCDa) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)Câu 2:Cho hình chóp S.ABCD có đáy...
Đọc tiếp

Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD

a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)

b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)

c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)

d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)

Câu 2:

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

Câu 3:

Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD

a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)

b) Tìm giao điểm của mặt phẳng (PMN) và BC

Câu 4:

Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC

a) Tìm giao tuyến của hai mặt phẳng  (IBC) và  (KAD)

b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)

Câu 5:

Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.

a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)

b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy

10 giây suy nghĩ cấm tìm trên mạng

1
4 tháng 10 2016

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm