Chứng minh :
a) \(7^{86+7^{85}-7^{84}}\) chia hết cho 55
b) \(16^7-2^{24}\)chia hết cho 15
c) \(16^5+2^{15}\)chia hết cho 33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(16^7-2^{24}\)
\(=268435456-16777216\)
\(=251658240\)
Mà \(251658240\)chia hết cho 15
\(\Rightarrow16^7-2^{24}\)chia hết cho 15
b) \(7^{80}+7^{85}-7^{84}\)
\(=7^{84}\left(7^2+7-1\right)\)
\(=7^{84}\left(49+7-1\right)\)
\(=7^{84}\left(56-1\right)\)
\(=7^{84}.55\)
Mà 55 luôn luôn chia hết cho 55
\(\Rightarrow7^{80}+7^{85}-7^{84}\)chia hết cho 55
c) \(16^5+2^{15}\)
\(16^5=2^{20}\)
\(\Rightarrow16^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}.2^5+2^{15}\)
\(=2^{15}\left(2^5+1\right)\)
\(=2^{15}.33\)
Mà 33 luôn luôn chia hết cho 33
\(\Rightarrow16^5+2^{15}\)chia hết cho 33
a.
76 + 75 - 74 = 73 x (73 + 72 - 7) = 74 x 385 = 74 x 35 x 11
Vậy 76 + 75 - 74 chia chết cho 35
b.
165 + 215 = (24)5 + 215 = 220 + 215 = 215 x (25 + 1) = 215 x 33
Vậy 165 + 215 chia hết cho 33
c.
817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 322 x (36 - 35 - 34) = 322 x 405
Vậy 817 - 279 - 913 chia hết cho 405
Chúc bạn học tốt ^^
B,
ta thấy:
16^5=2^20
=> A=16^5 + 2^15
= 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
a. Mình chỉ có thể chứng minh 7^6 + 7^7 chia hết cho 56 được thôi.
Ta có: \(7^6+7^7=7^5\left(7+7^2\right)=7^5\times56\)
\(\Rightarrow7^6+7^7⋮56\)(vì có chứa thừa số 56)
b. \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}\)
\(=2^{15}\times\left(2^5+1\right)=2^{15}\times33\)
\(\Rightarrow16^5+2^{15}⋮33\)(vì có chứa thừa số 33)
a,=7^4(7^2+7-1)
=7^4.55 vậy nó chia hết cho 55
b,16^5=2^20
2^15(2^5+1)
2^15.33 chia hết cho 33
các câu c,d cũng tương tự
b) 817 - 279 -913 chia hết cho 405
Ta có: 817 - 279 -913 = 328- 327-326
= 326(32-3-1)
= 326. 5 = 322. 405 chia hết cho 405 (đpcm)
a) 10\(^9\)+10\(^8\)+10\(^7\)
= 10\(^7\). (100 + 10 + 1)
= 10\(^6\) . 2 . 555 chia hết cho 555
b) Ta thấy: 16\(^5\)= 2\(^{20}\)
=> A = 16\(^5\) + 2\(^{15}\) = 2\(^{20}\)+ 2\(^{15}\)
= 2\(^{15}\).2\(^5\)+ 2\(^{15}\)
= 2\(^{15}\). (2\(^5\)+1)
= 2\(^{15}\).33
số này luôn chia hết cho 33
b) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)
c) \(16^5+2^{15}⋮33\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}.\left(1+2^5\right)\)
\(=2^{15}.33⋮33\)