1+2+...+x=55
2+4+...+2x=2010
6x+4x=2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)^3-4x\left(x+1\right)\left(x-1\right)\)
\(=3\left(x^3-1\right)+x^3-3x^2+3x-1-4x\left(x^2-1\right)\)
\(=3x^3-3+x^3-3x^2+3x-1-4x^3+4x\)
\(=-3x^2+7x-4\)
\(=-3\cdot\left(-1\right)^2+7\cdot\left(-1\right)-4\)
=-3-4-7=-14
b: \(=27x^3y^3-8-3xy\left(9x^2y^2+6xy+1\right)\)
\(=27x^3y^3-8-27x^3y^3-18x^2y^2-3xy\)
\(=-18x^2y^2-3xy-8\)
\(=-18\cdot\left[\left(-2010\right)\cdot\left(-\dfrac{1}{2010}\right)\right]^2-3\cdot\left(-2010\right)\cdot\dfrac{-1}{2010}-8\)
\(=-18-3-8=-29\)
Bài 2:
a: \(=-\left(x^2+4x-10\right)\)
\(=-\left(x^2+4x+4-14\right)=-\left(x+2\right)^2+14< =14\)
Dấu = xảy ra khi x=-2
b: \(=-2\left(x^2-2x+\dfrac{5}{2}\right)\)
\(=-2\left(x^2-2x+1+\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2-3< =-3\)
Dấu = xảy ra khi x=1
c: \(=x^2-2x+1-2\left(x^2+6x+9\right)+20\)
\(=x^2-2x+21-2x^2-12x-18\)
\(=-x^2-14x+3\)
\(=-\left(x^2+14x-3\right)\)
\(=-\left(x^2+14x+49-52\right)=-\left(x+7\right)^2+52< =52\)
Dấu = xảy ra khi x=-7
a: =>3,6-x+0,5=3,5-0,75+x
=>4,1-x=x+2,75
=>-2x=-1,35
=>x=0,675
b: =>5x^2-5x+x-1=0
=>(x-1)(5x+1)=0
=>x=1 hoặc x=-1/5
c: \(\Leftrightarrow\left(\dfrac{2-x}{2008}+1\right)=\left(\dfrac{1-x}{2009}+1\right)+\left(1-\dfrac{x}{2010}\right)\)
=>\(2010-x=0\)
=>x=2010
Bài 2:
Vì a,b là nghiệm PT nên \(\left\{{}\begin{matrix}30a^2-4a=2010\\30b^2-4b=2010\end{matrix}\right.\)
\(\Rightarrow N=\dfrac{a^{2008}\left(30a^2-4a\right)+b^{2008}\left(30b^2-4b\right)}{a^{2008}+b^{2008}}\\ \Rightarrow N=\dfrac{a^{2008}\cdot2010+b^{2008}\cdot2010}{a^{2008}+b^{2008}}=2010\)
Bài 1:
Viét: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)
\(M=\dfrac{2x_1^2+x_1x_2+2x_2^2}{x_1^2x_2+x_1x_2^2}=\dfrac{2\left(x_1+x_2\right)^2-3x_1x_2}{x_1x_2\left(x_1+x_2\right)}=\dfrac{2a^2-3a+3}{a^2-a}\)
a) x+2x+3x+4x+...+2011x = 2012.2013
\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156
\(\Rightarrow\) x.2023066 = 4050156
\(\Rightarrow\) x = 4026/2011
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
\(6x+4x-2x=2010\)
\(10x-2x=2010\)
\(8x=2010\)
\(\Rightarrow x=\frac{1005}{4}=251,25\)