Tìm x để căn thức sau xác định
\(\sqrt{x+1}+\sqrt{1-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\sqrt{\dfrac{1}{2-x}}\) xác định khi:
\(2-x>0\)
\(\Leftrightarrow-x>-2\)
\(\Leftrightarrow x< 2\)
\(\sqrt{1-x}+\sqrt{x-1}\)
Để căn thức XĐ thì \(\hept{\begin{cases}1-x\ge0\\x-1\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge1\end{cases}}}\)
a) A xác định khi:
x - 3 ≥ 0 và 4 - x > 0
⇔ x ≥ 3 và x < 4
⇔ 3 ≤ x < 4
b) B xác định khi x - 1 > 0 và x - 2 ≠ 0
⇔ x > 1 và x ≠ 2
a) \(A=\sqrt[]{x-3}-\sqrt[]{\dfrac{1}{4-x}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\4-x>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x< 4\end{matrix}\right.\)
\(\Leftrightarrow3\le x< 4\)
b) \(B=\dfrac{1}{\sqrt[]{x-1}}+\dfrac{2}{\sqrt[]{x^2-4x+4}}\left(1\right)\)
\(\left(1\right)xđ\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x^2-4x+4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left(x-2\right)^2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x\ne2\end{matrix}\right.\)
Căn thức đã cho xác định khi:
2-x>=0 và x>=0
<=>x<=2 và x>=0
<=>0<=x<=2
Vậy với 0<=x<=2 thì căn thức đã cho xác định.
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
Căn thức đã cho xác định khi
1-2x>0
<=>2x<1
<=>x<1/2
Vậy với x<1/2 thì căn thức đã cho xác định
a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)
mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)
Dễ thấy không có số nào tương thích với x
ĐKXĐ: x + 1 ≥ 0 và 1 - x ≥ 0
⇔ x ≥ -1 và x ≤ 1
⇔ -1 ≤ x ≤ 1