K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017
    

cách 1

 Giả sử AB<CD; từ B kẻ đường thẳng//AC, cắt DC kéo dài tại E --> ABEC là hình bình hành vì có các cạnh đối // từng đôi một. Vì AC vuông góc với BD nên EB vuông góc với BD --> DE^2=BD^2+BE^2 =12^2 +16^2 =20^2 --> DE=20 cm. Mà DE=CD+CE và CE=AB ---> AB+CD=20cm 
S(ABCD)= AC.BD/2=12.16/2= 96cm2 
S(ABCD)= (AB+CD).h/2 =20h/2 =10h 
10.h= 96 --> h= 9,6 cm 

cách 2

Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Gọi BH là đường cao của hình thang. 
Ta có ABEC là hình bình hành (cặp cạnh tương ứng song song) =>BE = AC = 16cm 
mà AC vuông góc với BD (gt) => BE vuông góc với BD 
CÁCH 1 : 
Áp dụng pytago vào tam giác vuông BDE =>DE = 20 cm ( tam giác 3:4:5 ). 
Mặt khác ta có : BH.DE = BD.BE ( cùng = 2 lần diện tích tam giác BDE hay có thể sử dụng tam giác đồng dạng để suy ra điều này) => BH = 12.16/20 = 9,6 (cm) 
CÁCH 2 : 
sử dụng định lý :1/h^2=1/b^2 +1/c^2 => h = BH = 9,6 (cm)

cách 3

Gọi O là giao điểm của AC và BD 
Hình thang có 2 đường chéo vuông góc với nhau nên nó là hình thoi 
Độ dài 1 cạnh hình thoi 
AB = sqrt(OA^2 + OB^2) = sqrt (8^2 + 6^2) = 10 cm 
S(hình thoi) = AB*h = AC*BD/2 
h = AC*BD(2AB) = 16*12/20 = 9,6 cm

bn chọn cách nào thì chọn nhưng nhớ k mk nha!

    
DD
22 tháng 6 2021

Dựng hình bình hành \(ABEC\).

Khi đó \(E\in DC\).

Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).

Kẻ \(BH\perp DE\)

Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\)

\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)

\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)

Có ai biết đổi tên cho mình hông?

23 tháng 8 2021

Hình vẽ minh họaundefined

23 tháng 8 2021

Hình vẽ minh họa 
undefined