Một người ở vị trí điểm A muốn đo khoảng cách đến điểm B ở bên kia sông mà không thể qua sông được. Sử dụng giác kế, người đó xác định được một điểm M trên bờ sông sao cho AM = 2 m, AM vuông góc với AB và đo được số đo góc AMB. Tiếp theo, người đó vẽ trên giấy tam giác A'M'B' vuông tại A' có AM' = 1cm, \(\widehat {A'M'B'} = \widehat {AMB}\) và đo được A'B' = 5 cm (H.9.56). Hỏi khoảng cách từ A đến B là bao nhiêu mét?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho (1) là ca nô, (2) là nước, (3) là bờ sông.
(a) Trong 100s, nước chảy đưa ca nô chếch từ vị trí B đến C, nên vận tốc của dòng nước so với bờ là: \(v_{23}=\dfrac{BC}{t}=\dfrac{200}{100}=2\left(m/s\right)\)
(b) Dựa vào hình vẽ, dễ thấy: \(\hat{ADB}=\alpha=60^o\).
Khi đi theo hướng \(AD:v_{12}=v_{12}';v_{23}=v_{23}'=2\left(m/s\right)\)
\(v_{23}'\) là vận tốc của dòng nước so với bờ sông, tức vecto này hướng theo hướng vector \(\overrightarrow{DB}\), \(v_{12}'\) là vận tốc của ca nô so với dòng nước, tức vecto này theo hướng vector \(\overrightarrow{AD}\).
Dựa vào hình vẽ và hệ thức lượng trong tam giác vuông: \(v_{12}'=\dfrac{v_{23}'}{cos\hat{ADB}}=\dfrac{2}{cos60^o}=4\left(m/s\right)\).
(c) Khi đi theo hướng \(AC\), vector \(\overrightarrow{v_{12}}\) hướng theo hướng vector \(\overrightarrow{AB}\)
\(\Rightarrow AB=v_{12}t=4\cdot100=400\left(m\right)\)
(d) Khi đi theo hướng \(AD\), vận tốc của thuyền so với bờ là \(v_{13}'=v_{12}'sin\hat{ADB}=4\cdot sin60^o=2\sqrt{3}\left(m/s\right)\)
Thời gian qua sông lần sau: \(t'=\dfrac{AB}{v_{13}'}=\dfrac{400}{2\sqrt{3}}\approx115,47\left(s\right)\)
Chọn C.
Gọi người bơi là (1), dòng nước là (2)
Để bơi sang sông với quãng đường ngắn nhất người đó phải bơi sao cho vận tốc v 12 ⇀ (vận tốc của người đối với nước) có hướng như hình vẽ để v 10 ⇀ (vận tốc của người đối với bờ sông) có phương vuông góc với bờ sông và thoả mãn:
v 10 ⇀ = v 20 ⇀ + v 12 ⇀
( v 20 ⇀ là vận tốc dòng chảy của nước)
Đáp án B
Gọi người là (1), dòng nước là (2)
Khi bơi theo hướng vuông góc với dòng chảy (hình a), khi đó người bơi đến điểm B, cách H một khoảng 50m
⇒ v 2 v 12 = 1 2
Để điểm B trùng với điểm H, hướng bơi ngoài đó (so với nước) có v 12 → phải như hình b
⇒ sin α = v 2 v 12 . Lưu ý : v 2 = v
Vậy sin α = 1 2 ⇒ α = 60 0
Nghĩa là người đó phải bơi theo hướng tạo với dòng chảy (tạo với v 2 → ) một góc bằng 1200
Chọn C.
Gọi người bơi là (1), dòng nước là (2)
Để bơi sang sông với quãng đường ngắn nhất người đó phải bơi sao cho vận tốc v 12 → (vận tốc của người đối với nước) có hướng như hình vẽ để v 10 → (vận tốc của người đối với bờ sông) có phương vuông góc với bờ sông và thoả mãn:
v 10 → = v 12 → + v 20 →
( v 20 → là vận tốc dòng chảy của nước)
Từ hình vẽ:
Suy ra góc tạo bởi v 12 → và v 20 → là:
Ta có: \(\widehat C = {65^o} - {35^o} = {30^o}\)(tính chất góc ngoài)
Áp dụng định lí sin trong tam giác ABC ta có:
\(\frac{{AC}}{{\sin B}} = \frac{{AB}}{{\sin C}} \Rightarrow AC = \frac{{AB.\sin B}}{{\sin C}}\)
\( \Leftrightarrow AC = \frac{{50.\sin ({{180}^o} - {{65}^o})}}{{\sin {{30}^o}}} \approx 90,63.\)
Độ rộng của khúc sông là: \(AC.\sin A = 90,63.\sin {35^o} \approx 52\;(m)\)
Trên bờ bên kia của dòng sông lấy điểm B, bờ bên này lấy điểm A đối diện với B. Để đo gián tiếp độ rộng của dòng sông (khoảng cách AB), người ta lấy điểm C bên này sông và cách A một khoảng AC = 80 mét, đặt giác kế tại C và đo được góc ^ACB = 34o. Tính chiều rộng AB của con sông?
( Cho biết: sin34o = 0,56 ; cos34o = 0,83 ; tg34o = 0,67 ; cotg34o = 1,48 )
Xét ΔA′M′B′ (vuông tại A) và ΔAMB (vuông tại A') có \(\widehat {A'M'B'} = \widehat {AMB}\)
=> ΔA′M′B′ ∽ ΔAMB
=> \(\frac{{A'M'}}{{AM}} = \frac{{A'B'}}{{AB}}\)
=> \(\frac{1}{2} = \frac{5}{{AB}}\)
=> AB=10 (cm)