K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a)

* Xét đường thẳng y = x

Cho x = 1 suy ra y = 1 nên điểm (1; 1) thuộc đường thẳng y = x

Đường thẳng y = x đi qua 2 điểm O(0; 0) và (1; 1)\

* Xét đường thẳng y = -x + 2

Cho x = 2 thì y = -2 + 2 = 0 nên điểm (2; 0) thuộc đường thẳng y = - x+ 2

Cho y = 2 suy ra x = 0 nên điểm (0; 2 ) thuộc đường thẳng y = -x + 2

Đường thẳng y = - x + 2 đi qua hai điểm (2; 0) và (0; 2)

 

b) Giao điểm A của hai đường thẳng đã cho là A(1;1)

c) Cho y =0 ta được −x + 2 = 0 hay x = 2, suy ra B(2; 0).

Gọi C là giao điểm của đường thẳng y = −x + 2 và trục Oy. Suy ra C(0; 2). Dễ thấy tam giác OBC vuông cân tại O (vì OB = OC = 2).

Xét hai tam giác OAB và OAC có:

cạnh OA chung;

OB = OC;

\( \widehat {OBA} = \widehat {OCA} = 45^0\)

Do đó \(\Delta OAB = \Delta OAC\), từ đó suy ra AB = AC.

Điều này chứng tỏ A là trung điểm của BC, mà \(\Delta OBC \) cân tại O nên \(OA \bot AB\), tức là \(\Delta OAB\) vuông tại A.

d)

Đường thẳng y = x có hệ số góc bằng 1.

Đường thẳng y = - x + 1 có hệ số góc bằng -1

Tích của hai hệ số góc bằng -1

 

a: loading...

b: PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

22 tháng 12 2023

a: 

loading...

b: Phương trình hoành độ giao điểm là:

4-2x=3x+1

=>-2x-3x=1-4

=>-5x=-3

=>\(x=\dfrac{3}{5}\)

Thay x=3/5 vào y=3x+1, ta được:

\(y=3\cdot\dfrac{3}{5}+1=\dfrac{9}{5}+1=\dfrac{14}{5}\)

Vậy: \(N\left(\dfrac{3}{5};\dfrac{14}{5}\right)\)

c: (d'): y=3x+1

=>a=3

\(tan\alpha=a=3\)

=>\(\alpha\simeq71^034'\)

30 tháng 11 2021

b. PTHĐGĐ của hai hàm số:

\(x+2=-2x+1\)

\(\Rightarrow x=-\dfrac{1}{3}\)

Thay x vào hs đầu tiên: \(y=-\dfrac{1}{3}+2=\dfrac{5}{3}\)

Tọa độ điểm \(A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\)

30 tháng 11 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}x+2=-2x+1\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=\dfrac{5}{3}\end{matrix}\right.\)

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

20 tháng 12 2020

b) Vì A(xA;yA) là giao điểm của (D) và (D1) nên Hoành độ của A là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của (D) và (D1)

hay \(-x-4=3x+2\)

\(\Leftrightarrow-x-4-3x-2=0\)

\(\Leftrightarrow-4x-6=0\)

\(\Leftrightarrow-4x=6\)

hay \(x=-\dfrac{3}{2}\)

Thay \(x=-\dfrac{3}{2}\) vào hàm số y=-x-4, ta được: 

\(y=-\left(-\dfrac{3}{2}\right)-4=\dfrac{3}{2}-4=\dfrac{3}{2}-\dfrac{8}{2}=-\dfrac{5}{2}\)

Vậy: \(A\left(-\dfrac{3}{2};-\dfrac{5}{2}\right)\)

c) Vì (D2) song song với (D) nên a=-1

hay (D2): y=-x+b

Vì (D2) đi qua điểm B(-2;5)

nên Thay x=-2 và y=5 vào hàm số y=-x+b, ta được: 

-(-2)+b=5

hay b=5-2=3

Vậy: (D2): y=-x+3

a: Phương trình hoành độ giao điểm là:

\(x^2=-x+2\)

=>\(x^2+x-2=0\)

=>(x+2)(x-1)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)

Thay x=-2 vào (P), ta được:

\(y=\left(-2\right)^2=4\)

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

b: A(-2;4); B(1;1)

\(OA=\sqrt{\left(-2-0\right)^2+\left(4-0\right)^2}=2\sqrt{5}\)

\(OB=\sqrt{\left(1-0\right)^2+\left(1-0\right)^2}=\sqrt{2}\)

\(AB=\sqrt{\left(1+2\right)^2+\left(1-4\right)^2}=\sqrt{3^2+3^2}=3\sqrt{2}\)

Vì \(OB^2+AB^2=OA^2\)

nên ΔOAB vuông tại B

=>\(S_{OAB}=\dfrac{1}{2}\cdot BO\cdot BA=\dfrac{1}{2}\cdot3\sqrt{2}\cdot\sqrt{2}=3\)

25 tháng 11 2023

a: loading...

b: Phương trình hoành độ giao điểm là:

4x-2=-x+3

=>4x+x=3+2

=>5x=5

=>x=1

Thay x=1 vào y=-x+3, ta được:

\(y=-1+3=2\)

Vậy: M(1;2)

c: Gọi \(\alpha;\beta\) lần lượt là góc tạo bởi (d1),(d2) với trục Ox

(d1): y=4x-2

=>\(tan\alpha=4\)

=>\(\alpha=76^0\)

(d2): y=-x+3

=>\(tan\beta=-1\)

=>\(\beta=135^0\)

d: Thay y=6 vào (d1), ta được:

4x-2=6

=>4x=8

=>x=2

=>A(2;6)

Thay x=6/2=3 vào (d2), ta được:

\(y=-3+3=0\)

vậy: B(3;0)

Vì (d):y=ax+b đi qua A(2;6) và B(3;0) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=6\\3a+b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2a+b-3a-b=6-0\\3a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=6\\b=-3a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-6\\b=-3\cdot\left(-6\right)=18\end{matrix}\right.\)

Vậy: (d): y=-6x+18

e: A(2;6); B(3;0); M(1;2)

\(AM=\sqrt{\left(1-2\right)^2+\left(2-6\right)^2}=\sqrt{17}\)

\(BM=\sqrt{\left(1-3\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(3-2\right)^2+\left(0-6\right)^2}=\sqrt{37}\)

Chu vi tam giác AMB là:

\(C_{AMB}=\sqrt{17}+2\sqrt{2}+\sqrt{37}\)

Xét ΔAMB có 

\(cosAMB=\dfrac{MA^2+MB^2-AB^2}{2\cdot MA\cdot MB}=\dfrac{17+8-37}{2\cdot2\sqrt{2}\cdot\sqrt{17}}=\dfrac{-3}{\sqrt{34}}\)

=>\(\widehat{AMB}\simeq121^0\) và \(sinAMB=\sqrt{1-\left(-\dfrac{3}{\sqrt{34}}\right)^2}=\dfrac{5}{\sqrt{34}}\)

Xét ΔAMB có

\(\dfrac{AB}{sinAMB}=\dfrac{AM}{sinABM}=\dfrac{BM}{sinBAM}\)

=>\(\dfrac{\sqrt{17}}{sinABM}=\dfrac{2\sqrt{2}}{sinBAM}=\sqrt{37}:\dfrac{5}{\sqrt{34}}\)

=>\(sinABM\simeq0,58;\widehat{BAM}\simeq0,4\)

=>\(\widehat{ABM}\simeq35^0;\widehat{BAM}\simeq24^0\)

22 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}2x+2=x\\y=x\end{matrix}\right.\Leftrightarrow x=y=-2\)

21 tháng 12 2020

b) Vì C(xC,yC) là giao điểm của hai đường thẳng y=x+2 và y=-2x+5 nên hoành độ của C là nghiệm của phương trình hoành độ giao điểm có hai vế là hai hàm số của y=x+2 và y=-2x+5

hay x+2=-2x+5

\(\Leftrightarrow x+2+2x-5=0\)

\(\Leftrightarrow3x-3=0\)

\(\Leftrightarrow3x=3\)

hay x=1

Thay x=1 vào hàm số y=x+2, ta được: 

y=1+2=3

Vậy: C(1;3)

Vì A(xA;yA) là giao điểm của đường thẳng y=x+2 với trục hoành nên yA=0

Thay y=0 vào hàm số y=x+2, ta được: 

x+2=0

hay x=-2

Vậy: A(-2:0)

Vì B(xB,yB) là giao điểm của đường thẳng y=-2x+5 với trục hoành Ox nên yB=0

Thay y=0 vào hàm số y=-2x+5, ta được: 

-2x+5=0

\(\Leftrightarrow-2x=-5\)

hay \(x=\dfrac{5}{2}\)

Vậy: \(B\left(\dfrac{5}{2};0\right)\)

Độ dài đoạn thẳng AB là:

\(AB=\sqrt{\left(xA-xB\right)^2+\left(yA-yB\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-2-\dfrac{5}{2}\right)^2+\left(0-0\right)^2}\)

\(\Leftrightarrow AB=\sqrt{\left(-\dfrac{9}{2}\right)^2}=\dfrac{9}{2}=4,5\left(cm\right)\)

Độ dài đoạn thẳng AC là: 

\(AC=\sqrt{\left(xA-xC\right)^2+\left(yA-yC\right)^2}\)

\(\Leftrightarrow AC=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow AC=\sqrt{18}=3\sqrt{2}\left(cm\right)\)

Độ dài đoạn thẳng BC là: 

\(BC=\sqrt{\left(xB-xC\right)^2+\left(yB-yC\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\left(\dfrac{5}{2}-1\right)^2+\left(0-3\right)^2}\)

\(\Leftrightarrow BC=\sqrt{\dfrac{45}{4}}=\dfrac{3\sqrt{5}}{2}\left(cm\right)\)

Chu vi của tam giác ABC là:

\(C_{ABC}=AB+AC+BC\)

\(\Leftrightarrow C_{ABC}=4.5+3\sqrt{2}+\dfrac{3\sqrt{5}}{2}\simeq12.10cm\)

Nửa chu vi của tam giác ABC là: 

\(P_{ABC}=\dfrac{C_{ABC}}{2}\simeq\dfrac{12.10}{2}=6.05cm\)

Diện tích của tam giác ABC là: 

\(S_{ABC}=\sqrt{P\cdot\left(P-AB\right)\cdot\left(P-BC\right)\cdot\left(P-AC\right)}\)

\(=\sqrt{6.05\cdot\left(6.05-4.5\right)\cdot\left(6.05-3\sqrt{2}\right)\cdot\left(6.05-\dfrac{3\sqrt{5}}{2}\right)}\)

\(\simeq6.76cm^2\)

21 tháng 12 2020

jup e nốt câu a vs 

2 tháng 12 2021

\(b,\text{PT hoành độ giao điểm: }x+2=-2x+1\Leftrightarrow3x=-1\\ \Leftrightarrow x=-\dfrac{1}{3}\Leftrightarrow y=\dfrac{5}{3}\Leftrightarrow A\left(-\dfrac{1}{3};\dfrac{5}{3}\right)\\ c,\text{Gọi }y=ax+b\left(a\ne0\right)\text{ là đt cần tìm}\\ \Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne1\\-\dfrac{1}{3}a+b=\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{7}{3}\end{matrix}\right.\\ \Leftrightarrow y=2x+\dfrac{7}{3}\)

10 tháng 9 2021

\(b,\) Tọa độ giao điểm 2 đường thẳng là:

\(\left\{{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=-2x+4\\y=x+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\Leftrightarrow A\left(1;2\right)\)

Tọa độ giao điểm 2 đường thẳng với trục hoành là 

\(\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}y=-2x+4\\y=x+1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}4-2x=0\\x+1=0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow B\left(2;0\right),C\left(-1;0\right)\)