Cho tam giác đều ABC, M là trung điểm của cạnh BC. Trên cạnh AB lấy điểm D. Tia DM cắt AC tại E. C/M MD<ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên ME lấy điểm K sao cho ^KCM = 600
Xét \(\Delta\)BMD và \(\Delta\)CMK có:
^BMD = ^CMK (đối đỉnh)
BM = CM (gt)
^DBM = ^KCM ( = 600)
Do đó \(\Delta\)BMD = \(\Delta\)CMK (g.c.g)
=> MK = MD (hai cạnh tương ứng)
Ta có: ^ACB + ^BCE = 1800 (kề bù)
hay 600 + ^MCE = 1800
=> ^MCE = 1200
Trên cùng một nửa mặt phẳng bờ CM có ^KCM < ^ECM ( 600 < 1200)
=> CK nằm giữa CM và CE
=> K nằm giữa M và E
=> MK < ME hay MD < ME
Vậy MD < ME (đpcm)
Giải thích các bước giải:
1 Cho tam giác đều ABC. Gọi M là trung điểm BC. Trên cạnh AB lấy một điểm D. Tia DM cắt AC tại E. Chứng minh rằng MD < ME
Bài làm
Trên AC lấy điểm K sao cho AK=AD
Xét tam giác ADM và tam giác AKM có:
AM là cạnh chung
ˆBAMBAM^=ˆMACMAC^(do AM là trung tuyến nhung là tam giác đều nên cũng là đường phân giác)
AD=AK(gt)
=>Tam giác ADM=Tam giác AKM(c.g.c)
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD