Dạ mọi người giúp em 3 câu 4,5,6 gấp với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)
\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)
\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)
a)\(\left\{{}\begin{matrix}\xi_b=\xi_1+\xi_2=6+3=9V\\r_b=r_1+r_2=2+1=3\Omega\end{matrix}\right.\)
b)CTM ngoài: \(R_1nt\left(R_2//R_3\right)\)
\(R_{23}=\dfrac{R_2\cdot R_3}{R_2+R_3}=\dfrac{2\cdot8}{2+8}=1,6\Omega\)
\(R_N=R_1+R_{23}=4,4+1,6=6\Omega\)
c)\(I_1=I_{23}=I=\dfrac{\xi_b}{r_b+R_N}=\dfrac{9}{3+6}=1A\)
\(U_1=I_1\cdot R_1=1\cdot4,4=4,4V\)
\(U_2=U_3=U_{23}=I_{23}\cdot R_{23}=1\cdot1,6=1,6V\)
35 A => on the flip side
36 A => in
37 C => have been derived
38 D => tremediously
39 B => becomes
40 D => of which
adu để em giúp
Để tính quãng đường đi được từ thời điểm t1 đến t2 cho vật giao động điều hòa dọc theo trục Ox, ta cần tính diện tích dưới đường cong x(t) trong khoảng thời gian từ t1 đến t2.
Trước tiên, chúng ta sẽ tính x(t) tại t1 và t2:
Tại t1 = 13/6 s: x(t1) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm
Tại t2 = 23/6 s: x(t2) = 3 * cos(4 * 3.14 - (3.14 / 3)) cm
Tiếp theo, chúng ta cần tính diện tích dưới đường cong trong khoảng từ t1 đến t2. Để làm điều này, ta sẽ tính diện tích của hình giữa đồ thị và trục Ox trong khoảng từ t1 đến t2.
Diện tích A = ∫(t1 đến t2) x(t) dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - (3.14 / 3))] dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt
A = ∫(13/6 đến 23/6) [3 * cos(4 * 3.14 - 3.14/3)] dt
A = ∫(13/6 đến 23/6) [3 * cos(12.56 - 1.0467)] dt
A = ∫(13/6 đến 23/6) [3 * cos(11.5133)] dt
Giải tích phần này trở nên phức tạp, nhưng bạn có thể tính toán nó bằng máy tính hoặc phần mềm tính toán. Kết quả sẽ là diện tích A, tức là quãng đường đi được từ t1 đến t2.
(em thay pi=3,14 luôn nha anh )