K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Ta có tam giác OBC đều, đường cao OI = (R√3)/2

I chạy trên đường tròn tâm O bán kính (R√3)/2. 

Vì A cố định, G là trọng tâm tam giác ABC nên   A G → =    2 3 A I →

  có phép vị tự tâm A tỉ số k = 2/3 biến đường tròn (O;(R√3)/2) thành đường tròn (O';R’) với  R ' =    R 3 2 .    2 3 =   R 3 3

Chọn đáp án C

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

23 tháng 11 2019

A B C O I G J S K H L A' M N

a) Đặt J là trung điểm cạnh BC. Theo quan hệ vuông góc giữa đường kính và dây ta có ^OIC = ^OJC = 900

Vậy I thuộc đường tròn đường kính OC cố định (đpcm).

b) Kẻ đường kính BK của (O). d cắt CK tại điểm S. Ta có AK vuông góc AB, IS vuông góc AB

Suy ra IS // AK. Vì I là trung điểm cạnh AC của tam giác AKC nên S là trung điểm CK cố định (đpcm).

c) OJ cắt (O) tại hai điểm phân biệt là A' và L (A' thuộc cung lớn BC). Hạ AH vuông góc BC

Ta thấy \(AH+JL\le AL\le2R=A'L\Rightarrow AH\le A'L-JL=A'J\)

Suy ra \(S=\frac{AH.BC}{2}\le\frac{A'J.BC}{2}\)(không đổi). Vậy S lớn nhất khi A trùng A'.

d) Trên đoạn JB,JC lấy M,N sao cho JM = JN = 1/6.BC. Khi đó M,N cố định.

Đồng thời \(\frac{JG}{JA}=\frac{JM}{JB}=\frac{JN}{JC}=\frac{1}{3}\). Suy ra ^MGN = ^BAC = 1/2.Sđ(BC (Vì GM // AB; GN // AC)

Vậy G là các điểm nhìn đoạn MN dưới một góc không đổi bằng 1/2.Sđ(BC, tức là một đường tròn cố định (đpcm).

23 tháng 11 2019

Chào chú Minh.

NV
26 tháng 3 2023

Theo t/c đường tròn, do M là trung điểm BC \(\Rightarrow OM\perp BC\)

Áp dụng định lý Pitago:

\(OM=\sqrt{OC^2-CM^2}=\sqrt{R^2-\left(\dfrac{BC}{2}\right)^2}=3\)

\(\Rightarrow\) Quỹ tích M là đường tròn tâm \(\left(O;3\right)\)

Mặt khác do G là trọng tâm tam giác ABC

\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow\) G là ảnh của M qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)

\(\Rightarrow\) Quỹ tích G là ảnh của \(\left(O;3\right)\) qua phép vị tự tâm A tỉ số \(k=\dfrac{2}{3}\)

\(\Rightarrow\) Quỹ tích G là đường tròn bán kính \(\dfrac{2}{3}.3=2\)

25 tháng 7 2021

1. Cho đường tròn (O;R) và 1 điểm A cố định trên đường tròn, BC là 1 dây cung di động của đường tròn này và BC có độ dài không đổi = 2d (d<R). Tìm tập hợp trọng tâm G của ΔABC