Cho tam giác ABC vuông tại A , đường cao AH.Biết AB =3cm ,AC =4cm và BC=20cm.Tính HB ,HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)
AH=căn 12^2-9^2=3*căn 7(cm)
CH=AH^2/HB=9*7/9=7(cm)
BC=9+7=16cm
AC=căn CH*BC=4*căn 7(cm)
Xét tam giác \(ABH\) vuông tại H có
\(AH^2+HB^2=AB^2\left(Pytago\right)\)
\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)
Xét tam giác ABC vuông tại A
\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)
bài làm tương tự :
dùng Pitago đảo thử từng cặp 1
ta có:
(b−c)2+h2
=b2+c2−2bc+h2(b−c)2+h2
=b2+c2−2bc+h2(1)
vì tam giác ABC vuông ở A có đường cao AH nên
a2=b2+c2a2=b2+c2vàAB.AB
=AH.BC=2SAB.AB
=AH.BC
=2Shayb.c
=a.hb.c=a.h
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
⇒b2+c2−2bc+h2
=a2−2ah+h2
=(a−h)2
bạn vẽ hình nha mk ko biết vẽ sorry
Áp dung định lí pytago vào tam giác ABC vuông tại A đường cao AH ta có:
\(AB^2+AC^2=BC^2\)
hay \(4^2+3^2=BC^2\)
\(\Rightarrow BC^2=16+9\)
\(\Rightarrow BC^2=25\)
\(\Rightarrow BC=5\left(cm\right)\)
Áp dụng hệ thức giữa cạnh và đường vào tam giác vuông \(ABC\)vuông tại \(A\) đường cao \(AH\) ta có:
+ \(AB^2=BH.BC\)
hay \(4^2=HB.5\)
\(\Rightarrow HB=16:5\)
\(\Rightarrow HB=3,2\left(cm\right)\)
+ \(AC^2=HC.BC\)
hay \(3^2=HC.5\)
\(\Rightarrow HC=9:5\)
\(\Rightarrow HC=1,8\left(cm\right)\)
vậy \(HB=3,2cm\)
\(HC=1,8cm\)
Xét tam giác ABH vuông tại H có:
\(AB^2=BH^2+AH^2\left(Pytago\right)\)
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2^2}=\sqrt{5}\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vg tại A có đg cao AH:
\(AH^2=BH.HC\)
\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{\sqrt{5}}=\dfrac{4\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(AC^2=HC^2+AH^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt[]{2^2+\left(\dfrac{4\sqrt{5}}{5}\right)^2}=\dfrac{6\sqrt{5}}{5}\left(cm\right)\)
Ta có: \(BC=HC+BH=\sqrt{5}+\dfrac{4\sqrt{5}}{5}=\dfrac{5+4\sqrt{5}}{5}\left(cm\right)\)
a: BC=5cm
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
c: Ta có: ΔHBA\(\sim\)ΔHAC
nên HB/HA=HA/HC
hay \(HA^2=HB\cdot HC\)
d: Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
hay BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{5}{7}\)
Do đó: BD=15/7(cm); CD=20/7(cm)
Đề sai rồi bạn
Xét tg ABC vuông tại A, đường cao AH:
AB^2= BH.BC (hệ thức lượng)
hay 9 = BH. 20
⇒ BH= 0,45
Xét tg ABC vuông tại A, đường cao AH:
AC^2= CH.BC (hệ thức lượng)
hay 16= CH.20
⇒ CH= 0,8