giải phương trình
\(2\left(2x-1\right)-3\sqrt{5x-6}=\sqrt{3x-8}\)
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
ĐK:tự xác định
\(pt\Leftrightarrow\sqrt{2\left(x+1\right)\left(x+3\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}-2\left(x+1\right)=0\)
\(\Leftrightarrow\sqrt{x+1}\left(\sqrt{2\left(x+3\right)}+\sqrt{x-1}-2\sqrt{x+1}\right)=0\)
Suy ra x=-1 là nghiệm và pt \(\sqrt{2\left(x+3\right)}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow2\left(x+3\right)+x-1+2\sqrt{2\left(x+3\right)\left(x-1\right)}=4\left(x+1\right)\)
\(\Leftrightarrow2\sqrt{2\left(x+3\right)\left(x-1\right)}=x-1\)
\(\Leftrightarrow8\left(x+3\right)\left(x-1\right)-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(8x+24-x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+25\right)=0\Rightarrow x=1\) (thỏa và 7x+25=0 loại do điều kiện....)
b nghiệm xấu quá để mình xem lại :v
\(\Leftrightarrow\sqrt{2x+6}+\sqrt{x-1}=2\sqrt{x+1}\)
\(\Leftrightarrow\sqrt{2x+6}-2\sqrt{2}+\sqrt{x-1}=2\sqrt{x+1}-2\sqrt{2}\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{2x+6}+2\sqrt{2}}+\sqrt{x-1}=\frac{2\sqrt{x-1}}{\sqrt{x+1}+2\sqrt{2}}\)
\(\Leftrightarrow\frac{2\sqrt{x-1}}{\sqrt{2x+6}+2\sqrt{2}}+1=\frac{2\sqrt{x-1}}{\sqrt{x+1}+1\sqrt{2}}\)
đến đây thì chịu
tìm đc 1 nghiệm là -1;1,nên bình phương lên
ĐK : \(\begin{cases}x\ge\frac{-1}{3}\\y\le5\end{cases}\)
\(\sqrt{5x^2+3y+1}+1-4x=0\)
\(\Leftrightarrow\begin{cases}x\ge\frac{1}{4}\\5x^2+3y+1=16x^2-8x+1\left(1\right)\end{cases}\)
(1) \(\Leftrightarrow11x^2-8x-3y=0\left(2\right)\)
Đặt \(\begin{cases}\sqrt{3x+1}=a\left(a\ge0\right)\\\sqrt{5-y}=b\left(b\ge0\right)\end{cases}\) \(\Rightarrow\begin{cases}3x+2=a^2+1\\6-y=b^2+1\end{cases}\)
\(\Rightarrow a\left(a^2+1\right)=b\left(b^2+1\right)\\ \Leftrightarrow a^3-b^3+a-b=0\\ \Leftrightarrow\left(a-b\right)\left(a^2-ab+b^2+1\right)=0\\ \Leftrightarrow a-b=0\left(a^2-ab+b^2+1>0\right)\\\Leftrightarrow a=b\\ \)
\(\Rightarrow\sqrt{3x+1}=\sqrt{5-y}\\ \Leftrightarrow3x+1=5-y\\ \Leftrightarrow y=4-3x\left(3\right)\)
Từ (2) và (3)
\(\Rightarrow11x^2-8x-3\left(4-3x\right)=0\\ \Leftrightarrow11x^2+x-12=0\\ \Leftrightarrow x=1\left(TM\right);x=\frac{-12}{11}\left(loại\right)\\ \Rightarrow y=1\left(TM\right)\)
Vậy S = \(\left\{\left(1;1\right)\right\}\)
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
1) đkxđ \(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\y\ge0\end{matrix}\right.\)
Xét biểu thức \(P=x^3+y^3+7xy\left(x+y\right)\)
\(P=\left(x+y\right)^3+4xy\left(x+y\right)\)
\(P\ge4\sqrt{xy}\left(x+y\right)^2\)
Ta sẽ chứng minh \(4\sqrt{xy}\left(x+y\right)^2\ge8xy\sqrt{2\left(x^2+y^2\right)}\) (*)
Thật vậy, (*)
\(\Leftrightarrow\left(x+y\right)^2\ge2\sqrt{2xy\left(x^2+y^2\right)}\)
\(\Leftrightarrow\left(x+y\right)^4\ge8xy\left(x^2+y^2\right)\)
\(\Leftrightarrow x^4+y^4+6x^2y^2\ge4xy\left(x^2+y^2\right)\) (**)
Áp dụng BĐT Cô-si, ta được:
VT(**) \(=\left(x^2+y^2\right)^2+4x^2y^2\ge4xy\left(x^2+y^2\right)\)\(=\) VP(**)
Vậy (**) đúng \(\Rightarrowđpcm\). Do đó, để đẳng thức xảy ra thì \(x=y\).
Thế vào pt đầu tiên, ta được \(\sqrt{2x-3}-\sqrt{x}=2x-6\)
\(\Leftrightarrow\dfrac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}=2\end{matrix}\right.\)
Rõ ràng với \(x\ge\dfrac{3}{2}\) thì \(\dfrac{1}{\sqrt{2x-3}+\sqrt{x}}\le\dfrac{1}{\sqrt{\dfrac{2.3}{2}-3}+\sqrt{\dfrac{3}{2}}}< 2\) nên ta chỉ xét TH \(x=3\Rightarrow y=3\) (nhận)
Vậy hệ pt đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(3;3\right)\)
Sr tui bj cuồng liên hợp làm mãi cách này có lố ko nhỉ :v
Đk:\(x\ge\frac{8}{3}\)
\(pt\Leftrightarrow4x-2-8-\left(3\sqrt{5x-6}-9\right)=\sqrt{3x-8}-1\)
\(\Leftrightarrow4x-2-10-\frac{9\left(5x-6\right)-81}{3\sqrt{5x-6}+9}=\frac{3x-8-1}{\sqrt{3x-8}+1}\)
\(\Leftrightarrow4\left(x-3\right)-\frac{45\left(x-3\right)}{3\sqrt{5x-6}+9}-\frac{3\left(x-3\right)}{\sqrt{3x-8}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}\right)=0\)
Dễ thấy: \(4-\frac{45}{3\sqrt{5x-6}+9}-\frac{3}{\sqrt{3x-8}+1}>0\forall x\ge\frac{8}{3}\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
cảm ơn bạn nhiều lắm :v mà cô bọn tui bắt làm bài này theo cách tổng bình phương :v hiccc