Tính giá trị của biểu thức
a) A = x^2 + 6x + 10 với x = -103
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, thay x = 103 ta có:
1032 - 6.103 +10 = 10 609 - 618 + 10 = 10 001.
b, thay x = 98 ta có:
982 + 4.98 + 1 = 9604 + 392 + 1 = 9997.
hok tốt
a,\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
Thay x=103 vào A ta đc:
\(A=\left(103-3\right)^2+1\)
\(=100^2+1\)
\(=10001\)
b,\(B=x^2+4x+1\)
\(=x^2+4x+4-3\)
\(=\left(x+2\right)^2-3\)
Thay x=98 vào B ta đc: \(B=\left(98+2\right)^2-3\)
\(=9997\)
a. Thay a = 14, b = 15, c = 10, ta có:
\(a=a\times b+200\)
\(=>a=14\times15+200\)
\(=>a=210+200=410\)
___
\(b=a\times b\times c\)
\(=>b=14\times15\times10=2100\)
b. Vì 410 < 2100 nên a < b.
\(#NqHahh\)
a: Khi a=14 và b=15 thì \(A=14\cdot15+200=210+200=410\)
Khi a=14 và b=15 và c=10 thì \(B=14\cdot15\cdot10=210\cdot10=2100\)
b: A=410
B=2100
=>A<B
Ta có:
\(A=x\left(x+y\right)-x\left(y-x\right)=x^2+xy-xy+x^2=2x^2\)
Thay \(x=-3\) vào A, ta có:
\(A=2.\left(-3\right)^2=18\)
Vậy A=18
\(A=x\left(x+y\right)-x\left(y-x\right)=x\left(x+y\right)+x\left(x+y\right)=\left(x+y\right).2x=\left(-3+2\right).2.\left(-3\right)=6\)
a, Thay x = 1/2 ; y = -1/3 ta được
\(A=\dfrac{3.1}{8}\left(-\dfrac{1}{3}\right)+\dfrac{6.1}{4}.\left(\dfrac{1}{9}\right)+\dfrac{3.1}{2}\left(-\dfrac{1}{3}\right)^3\)
\(=-\dfrac{1}{8}+\dfrac{1}{12}+\dfrac{3}{2\left(-27\right)}=-\dfrac{7}{72}\)
b, Thay x = -1 ; y = 3 ta được
\(B=9+\left(-1\right).3-1+27=32\)
bạn thay chỗ nào x là \(\dfrac{1}{2}\) còn chỗ nào y là \(\dfrac{-1}{3}\)nhé
còn như là 3\(x^3\)y thì thành là 3.\(x^3\).y nhé
mk lười nên ko giải ra cho bạn được
a) \(\dfrac{9x^2-6x+1}{9x^2-1}\)
\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{3x-1}{3x+1}\)
\(=\dfrac{3\cdot\left(-3\right)-1}{3\cdot\left(-3\right)+1}=\dfrac{-9-1}{-9+1}=\dfrac{-10}{-8}=\dfrac{5}{4}\)
b) Ta có: \(\dfrac{x^2-6x+9}{3x^2-9x}\)
\(=\dfrac{\left(x-3\right)^2}{3x\left(x-3\right)}\)
\(=\dfrac{x-3}{3x}\)
\(=\dfrac{-\dfrac{1}{3}-3}{3\cdot\dfrac{-1}{3}}=\dfrac{-\dfrac{10}{3}}{-1}=\dfrac{10}{3}\)
c) Ta có: \(\dfrac{x^2-4x+4}{2x^2-4x}\)
\(=\dfrac{\left(x-2\right)^2}{2x\left(x-2\right)}\)
\(=\dfrac{x-2}{2x}\)
\(=\dfrac{\dfrac{-1}{2}-2}{2\cdot\dfrac{-1}{2}}=\dfrac{-\dfrac{5}{2}}{-1}=\dfrac{5}{2}\)
A = x ( x + y ) - y ( x + y )
A = ( x + y ) ( x - y )
A = x\(^2\) - y\(^2\)
Tại x = \(\dfrac{-1}{2}\) và y = -2 ta có
\(\left(\dfrac{-1}{2}\right)^2-\left(-2\right)^2\) \(=\) \(\dfrac{-15}{4}\)
`a)100x^2-20x+1`
`=(10x-1)^2`
Thay `x=1/10`
`=>100x^2-20x+1=(1-1)^2=0`
`b)49x^2-42x+10`
`=49*4/49-42*2/7+10`
`=4-12+10=2`
`c)25x^2+40x+16y^2`
`=(5x+4y)^2=(2+3)^2=25`
A=x^2+6x+9+1
=(x+3)^2+1
Thay x=-103 vào A, ta được:
A=(-103+3)^2+1=10000+1=10001
\(a,A=x^2+6x+10\)
\(=\left(x^2+2\cdot x\cdot3+3^2\right)+1\)
\(=\left(x+3\right)^2+1\)
Thay \(x=-103\) vào \(A\), ta được:
\(A=\left(-103+3\right)^2+1\)
\(=\left(-100\right)^2+1\)
\(=10000+1\)
\(=10001\)
#Urushi