Tính nhanh: \(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)....\left(\dfrac{1}{1999}-1\right)\)
HELP ME! Có thể giải chi tiết giúp e đc ko ạ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\dfrac{\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{2002}-1\right)\left(\dfrac{1}{2003}-1\right)}{\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{9999}{10000}}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{9}\right)\left(1-\dfrac{1}{100^2}\right)}\)
\(=\dfrac{\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{2002}\right)\left(1-\dfrac{1}{2003}\right)}{\left(1-\dfrac{1}{2}\right)\left(1+\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1-\dfrac{1}{100}\right)\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{100}{101}\cdot\dfrac{101}{102}\cdot...\cdot\dfrac{2002}{2003}}{\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{3}\right)\cdot...\cdot\left(1+\dfrac{1}{100}\right)}\)
\(=\dfrac{100}{2003}:\left(\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\right)\)
\(=\dfrac{100}{2003}:\left(\dfrac{101}{2}\right)=\dfrac{100}{2003}\cdot\dfrac{2}{101}=\dfrac{200}{202303}\)
\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}-\dfrac{3}{2}+1=\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1=-\dfrac{3}{2}\)
= 4 . -1/8 - 2 . -1/4 + 3 . -1/2 + 1
= -1/2 - -1/2 + -3/2 + 1
= -1/2
\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-1998}{1999}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{1998}{1999}=\dfrac{1}{1999}\)
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 4$
\(A=\left[\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-1\right]:\left[\frac{(3-\sqrt{x})(3+\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+3)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right]\)
\(=\left(\frac{\sqrt{x}}{\sqrt{x}+3}-1\right):\left(\frac{3-\sqrt{x}}{\sqrt{x}-2}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{-3}{\sqrt{x}+3}:\frac{-(\sqrt{x}-2)}{\sqrt{x}+3}=\frac{-3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{-(\sqrt{x}-2)}=\frac{3}{\sqrt{x}-2}\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}=\dfrac{1}{5}\)
Ta có \(1+\dfrac{1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{\left(k-1\right)\left(k+1\right)+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2-1+1}{\left(k-1\right)\left(k+1\right)}\) \(=\dfrac{k^2}{\left(k-1\right)\left(k+1\right)}\).
Từ đó \(1+\dfrac{1}{1.3}=\dfrac{2^2}{1.3}\); \(1+\dfrac{1}{2.4}=\dfrac{3^2}{2.4}\); \(1+\dfrac{1}{3.5}=\dfrac{4^2}{3.5}\); \(1+\dfrac{1}{4.6}=\dfrac{5^2}{4.6}\);...; \(1+\dfrac{1}{2022.2024}=\dfrac{2023^2}{2022.2024}\).
Suy ra \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{2022.2024}\right)\)
\(=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}...\dfrac{2023^2}{2022.2024}\)
\(=\dfrac{2.2023}{2024}\) \(=\dfrac{2023}{1012}\)
\(a.=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{5}{3}+\dfrac{3}{2}+\dfrac{7}{3}-\dfrac{5}{2}=\dfrac{1+3-5}{2}-\dfrac{2+5-7}{3}=\dfrac{-1}{2}\)
\(b.\left(\dfrac{3}{4}-1\dfrac{1}{6}\right)^2:\sqrt{\dfrac{25}{144}}=\left(-\dfrac{5}{12}\right)^2:\dfrac{5}{12}=\dfrac{5}{12}\)
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)
\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)
\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\)
\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)
\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)
\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)
\(B=-1\) (2019 số -1)
Mà: \(-1< \dfrac{1}{2}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(\dfrac{1}{2^2}\); \(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1
Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:
(2020 - 2):1 + 1 = 2019 (số hạng)
Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)
\(...A=\left(-\dfrac{1}{2}\right).\left(-\dfrac{2}{3}\right).\left(-\dfrac{3}{4}\right)....\left(-\dfrac{1998}{1999}\right).\)
Số dấu trừ là : \(\left(1998-1\right):1+1=1998\) là số chẵn
\(\Rightarrow A=\dfrac{1.2.3...1998}{2.3.4...1999}\)
\(\Rightarrow A=\dfrac{1}{1999}\)
gợi ý nè
tính hết mấy cái hiệu trong ngoặc rồi nhân lại
vì kết thúc ở số 1999
nên sẽ có 1999 dấu -
nên kq là âm
nhân ra rồi triệt tiêu đi