cho tam giác ABC các đường trung tuyến BD và CE cắt nhau tại G Gọi H, K lần lượt là trung điểm của GB, GC
a) C/m DE//HK và DE=HK
b) C/m EH //DK và EH=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)XÉT \(\Delta BEC\left(\widehat{BEC}=90^0\right)\)CÓ
MB=MC(gt) \(\Rightarrow\)EM LÀ ĐƯỜNG TRUNG TUYẾN CỦA\(\Delta BEC\)
\(\Rightarrow EM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(1\right)\)
XÉT \(\Delta CDB\left(\widehat{CDB}=90^0\right)\)CÓ
MB=MC\(\Rightarrow\)DM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta CDB\)
\(\Rightarrow DM=\frac{BC}{2}\)(TÍNH CHẤT ĐƯỜNG TRUNG TUYẾN TRONG TAM GIÁC VUÔNG)\(\left(2\right)\)
TỪ (1) VÀ (2) SUY RA \(EM=DM\left(=\frac{BC}{2}\right)\)
\(\Rightarrow\Delta EMD\)CÂN TẠI M
MẶT KHÁC : XÉT \(\Delta EMD\)CÓ
I LÀ TRUNG ĐIỂM CỦA DE (gt)
HAY IM LÀ ĐƯỜNG TRUNG TUYẾN CỦA \(\Delta EMD\)
VÌ \(\Delta EMD\)CÂN TẠI M NÊN IM VỪA LÀ ĐƯỜNG TRUNG TUYẾN VỪA LÀ ĐƯỜNG CAO CỦA \(\Delta EMD\)
\(\Rightarrow MI\perp DE\)
b) XÉT TỨ GIÁC BEDC CÓ
\(MI\perp ED\)
\(CD\perp ED\)
\(\Rightarrow BHDC\)LÀ HÌNH THANG
XÉT HÌNH THANG BHDC CÓ
\(MI\perp HD\)
\(DC\perp HD\)
\(\Rightarrow\)MI //CD
BM=MC(gt)
\(\Rightarrow\)MI LÀ ĐƯỜNG TRUNG BÌNH CỦA HÌNH THANG BEDC
\(\Rightarrow IH=IK\)
TA CÓ \(EH=IH-IE\)
\(DK=IK-ID\)
MÀ \(IE=ID\left(gt\right)\);\(IH=IK\left(cmt\right)\)
\(\Rightarrow EH=DK\)
có thể cm \(IH=IK\)theo cách khác là
ta có \(MI\perp HD\)
\(BH\perp HD\)
\(CK\perp HD\)
\(\Rightarrow\)MI //BH // CK
mặt khác ta có BM=MC
\(\Rightarrow IH=IK\)(tính chất các đường thẳng song song cách đều)
Bài 1:
Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và \(DE=\dfrac{BC}{2}\left(1\right)\)
Xét ΔGBC có
I là trung điểm của GB
K là trung điểm của GC
Do đó: IK là đường trung bình của ΔGBC
Suy ra: IK//BC và \(IK=\dfrac{BC}{2}\left(2\right)\)
Từ (1) và (2) suy ra DE//IK và DE=IK
a. Xét \(\Delta ABC\)
Ta có \(\hept{\begin{cases}AE=EB\\AD=DC\end{cases}\Rightarrow DE}\)là đường trung bình của tam giác ABC
\(\Rightarrow\)DE song song BC và \(DE=\frac{1}{2}BC\left(1\right)\)
Xét \(\Delta BGC\)có \(\hept{\begin{cases}BI=IG\\CK=KG\end{cases}\Rightarrow IK}\)là đường trung bình của tam giác BGC
\(\Rightarrow\)IK song song BC và \(IK=\frac{1}{2}BC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DE\)song song \(IK\)và \(DE=IK\)
b. Theo tính chất của trọng tâm ta có
\(GF=\frac{1}{3}AF\);\(AG=\frac{2}{3}AF\left(3\right)\)
Xét \(\Delta ABG\)có IE là đường trung bình suy ra \(IE=\frac{1}{2}AG\left(4\right)\)
Từ (3) và (4) \(\Rightarrow IE=\frac{1}{2}AG=\frac{1}{2}.\frac{2}{3}AF=\frac{1}{3}AF=GF\)
Vậy \(IE=GF\)
a: Xét ΔABC có
E là trung điểm của AB
D là trung điểm của AC
Do đó: ED là đường trung bình của ΔABC
Ta có \(\hept{\begin{cases}GH=GD=\frac{1}{3}BD\\GE=GK=\frac{1}{3}CE\end{cases}}\)(theo tính chất của trọng tâm )
\(\Rightarrow HEDK\)là hình bình hành
a. \(\Rightarrow\)ED song song HK , ED=HK
B.\(\Rightarrow\)EH song song DK , EH=DK