Cho hình chữ nhật ABCD Gọi MNPQ lần lượt là trung điểm của AB, BC, CD da Chứng minh rằng mnpq là hình thoi không dùng đường trung bình helppppp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD có AM/AB=AQ/AD
nên MQ//BD và MQ=BD/2
Xét ΔCBD có CP/CD=CN/CB
nên NP//BD và NP=BD/2
=>MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: KHi ABCD là hình thoi thì AC vuông góc với BD
=>MQ vuông góc với MN
=>MNPQ là hình chữ nhật
c: khi ABCD là hình chữ nhật thì AC=BD
=>MN=MQ
=>MNPQ là hình thoi
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình của ΔADC
Suy ra: QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
Lời giải:
$Q,M$ lần lượt là trung điểm của $AD, AB$ nên $QM$ là đường trung bình của tam giác $ADB$ ứng với cạnh $BD$
$\Rightarrow QM\parallel BD$
Tương tự:
$MN\parallel AC, PN\parallel BD, QP\parallel AC$
Do đó:
$MN\parallel PQ\parallel AC$ và $QM\parallel PN\parallel DB$
Tứ giác $MNPQ$ có 2 cặp cạnh đối song song với nhau nên là hình bình hành.
Mà $AC\perp BD$ (do $ABCD$ là hình thoi)
$\Rightarrow QM\perp MN\Rightarrow \widehat{M}=90^0$
Hình bình hành $MNPQ$ có $\widehat{M}=90^0$ nên $MNPQ$ là hình chữ nhật.
a: Xét ΔABD có
M là trung điểm của AB
Q là trung điểm của AD
Do đó: MQ là đường trung bình của ΔABD
Suy ra: MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N là trung điểm của BC
P là trung điểm của CD
Do đó: NP là đường trung bình của ΔBCD
Suy ra: NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
hay MQPN là hình bình hành
M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD
⇒ AM = MB; BN = NC; CP = DP; AQ = DQ
+ Xét Δ ABD có
⇒ MQ là đường trung bình của Δ ABD.
⇒ QM = 1/2BD = 1/2AC ( 1 )
+ Xét Δ ABC có
⇒ MN là đường trung bình của Δ ABC.
⇒ MN = 1/2BD = 1/2AC ( 2 )
+ Xét Δ BCD có
⇒ NP là đường trung bình của Δ BCD.
⇒ NP = 1/2BD = 1/2AC ( 3 )
+ Xét Δ ADC có
⇒ QP là đường trung bình của Δ ADC.
⇒ QP = 1/2BD = 1/2AC ( 4 )
Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.
⇒ MNPQ là hình thoi.
Xét △ADC có:
AQ=QD và DP=PC
=>QP là đường trung bình=>QP//AC và QP=1/2 AC
Xét △ABC có:
AM=MB và BN=NC
=>MN là đường trung bình=>MN//AC và MN=1/2 AC
=>MN//QP và MN=QP
=>MNPQ là hbh
Xét △ABD có :
AQ=QD và MA=MB
=>QM là đường trung bình
=>QM=1/2 BD
Mà AC=BD (do ABCD là hcn)
=>QM=1/2 AC
=>QM=QP
=>MNPQ là h.thoi
Xét Δ AQN và Δ MBN có :
\(\widehat{QAM}=\widehat{MBN}=90^o\)
\(AM=BM\) (M là trung điểm AB)
\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)
⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)
\(\Rightarrow QM=MN\left(1\right)\)
Chứng minh tương tự :
- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)
- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)
- Δ PNC và Δ MBN (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)
\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)
⇒ Tứ giác MNQP là hình thoi (dpcm)