K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2023

Xét Δ AQN và Δ MBN có :

\(\widehat{QAM}=\widehat{MBN}=90^o\)

\(AM=BM\) (M là trung điểm AB)

\(AQ=BN\) (Q;N là trung điểm AD;BC và AD=BC)

⇒ Δ AQN và Δ MBN (cạnh, góc, cạnh)

\(\Rightarrow QM=MN\left(1\right)\)

Chứng minh tương tự :

- Δ AQN và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow QM=QP\left(2\right)\)

- Δ PNC và Δ QDP (cạnh, góc, cạnh) \(\Rightarrow PN=QP\left(3\right)\)

- Δ PNC và Δ MBN  (cạnh, góc, cạnh) \(\Rightarrow PN=MN\left(4\right)\)

\(\left(1\right);\left(2\right);\left(3\right);\left(4\right)\Rightarrow QM=MN=PN=QP\)

⇒ Tứ giác MNQP là hình thoi (dpcm)

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CP/CD=CN/CB

nên NP//BD và NP=BD/2

=>MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: KHi ABCD là hình thoi thì AC vuông góc với BD

=>MQ vuông góc với MN

=>MNPQ là hình chữ nhật

c: khi ABCD là hình chữ nhật thì AC=BD

=>MN=MQ

=>MNPQ là hình thoi

12 tháng 12 2021

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Lời giải:

$Q,M$ lần lượt là trung điểm của $AD, AB$ nên $QM$ là đường trung bình của tam giác $ADB$ ứng với cạnh $BD$

$\Rightarrow QM\parallel BD$

Tương tự:

$MN\parallel AC, PN\parallel BD, QP\parallel AC$

Do đó:

$MN\parallel PQ\parallel AC$ và $QM\parallel PN\parallel DB$ 

Tứ giác $MNPQ$ có 2 cặp cạnh đối song song với nhau nên là hình bình hành.

Mà $AC\perp BD$ (do $ABCD$ là hình thoi)

$\Rightarrow QM\perp MN\Rightarrow \widehat{M}=90^0$

Hình bình hành $MNPQ$ có $\widehat{M}=90^0$ nên $MNPQ$ là hình chữ nhật.

 

AH
Akai Haruma
Giáo viên
26 tháng 11 2021

Hình vẽ:

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

18 tháng 12 2018

Lý thuyết: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, AD

⇒ AM = MB; BN = NC; CP = DP; AQ = DQ

+ Xét Δ ABD cóLý thuyết: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ MQ là đường trung bình của Δ ABD.

⇒ QM = 1/2BD = 1/2AC       ( 1 )

+ Xét Δ ABC cóLý thuyết: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ MN là đường trung bình của Δ ABC.

⇒ MN = 1/2BD = 1/2AC       ( 2 )

+ Xét Δ BCD cóLý thuyết: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ NP là đường trung bình của Δ BCD.

⇒ NP = 1/2BD = 1/2AC       ( 3 )

+ Xét Δ ADC cóLý thuyết: Hình thoi | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ QP là đường trung bình của Δ ADC.

⇒ QP = 1/2BD = 1/2AC       ( 4 )

Từ ( 1 ),( 2 ),( 3 ),( 4 ) ⇒ MN = NP = PQ = QM.

⇒ MNPQ là hình thoi.

10 tháng 1 2022

A B D C M N P Q Xét △ADC có:

AQ=QD và DP=PC

=>QP là đường trung bình=>QP//AC và QP=1/2 AC

Xét △ABC có:

AM=MB và BN=NC

=>MN là đường trung bình=>MN//AC và MN=1/2 AC

=>MN//QP và MN=QP

=>MNPQ là hbh

Xét △ABD có :

AQ=QD và MA=MB

=>QM là đường trung bình 

=>QM=1/2 BD

Mà AC=BD (do ABCD là hcn)

=>QM=1/2 AC

=>QM=QP

=>MNPQ là h.thoi