1. Tìm các số tự nhiên m sao cho: \(121⋮\left(9+\sqrt{m}\right)\)
2. Cho \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)và \(3x+4y\ne0;x\ne0\). Tìm tỉ số \(\frac{2y}{x}\)
Câu 1 mình tìm ra m = 4 và m = \(121^2\)
Câu 2 mình giải ra tỉ số = 1, không biết đúng ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai phát hiện sai đề thì sửa và làm giúp mk hộ với, cảm ơn :) (chỉ cần làm tóm tắt thôi)
\(2,\left\{{}\begin{matrix}x^3-2x^2y-15x=6y\left(2x-5-4y\right)\left(1\right)\\\frac{x^2}{8y}+\frac{2x}{3}=\sqrt{\frac{x^3}{3y}+\frac{x^2}{4}}-\frac{y}{2}\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(2y-x\right)\left(x^2-12y-15\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2y=x\\y=\frac{x^2-15}{12}\end{matrix}\right.\)
Ta xét các trường hợp sau:
Trường hợp 1:
\(y=\frac{x^2-15}{12}\) thay vào phương trình \(\left(2\right)\) ta được:
\(\frac{3x^2}{2\left(x^2-15\right)}+\frac{2x}{3}=\sqrt{\frac{4x^3}{x^2-15}+\frac{x^2}{4}}-\frac{x^2-15}{24}\)
\(\Leftrightarrow\frac{36x^2}{x^2-15}-12\sqrt{\frac{x^2}{x^2-15}\left(x^2+16x-15\right)}+\left(x^2+16x-15\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\6\sqrt{\frac{x^2}{x^2-15}}=\sqrt{\left(x^2+16x-15\right)}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36\frac{x^2}{x^2-15}=x^2+16x-15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+16x-15\ge0\\36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\left(3\right)\end{matrix}\right.\)
Ta xét phương trình \(\left(3\right):36x^2=\left(x^2-15\right)\left(x^2+16x-15\right)\)
Vì: \(x=0\) Không phải là nghiệm. Ta chia cả hai vế p.trình cho \(x^2\) ta được:
\(36=\left(x-\frac{15}{x}\right)\left(x+16-\frac{15}{x}\right)\)
Đặt: \(x-\frac{15}{x}=t\Rightarrow t^2+16t-36=0\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-18\end{matrix}\right.\)
+ Nếu như:
\(t=2\Leftrightarrow x-\frac{15}{x}=2\Leftrightarrow x^2-2x-15=0\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)\(\Leftrightarrow x=5\)
+ Nếu như:
\(t=-18\Leftrightarrow x-\frac{15}{x}=-18\Leftrightarrow x^2+18x-15=0\Leftrightarrow\left[{}\begin{matrix}x=-9-4\sqrt{6}\\x=-9+4\sqrt{6}\end{matrix}\right.\Leftrightarrow x=-9-4\sqrt{6}\)
Trường hợp 2:
\(x=2y\) thay vào p.trình \(\left(2\right)\) ta được:
\(\Leftrightarrow\frac{x^2}{4x}+\frac{2x}{3}=\sqrt{\frac{2x^3}{3x}+\frac{x^2}{4}}-\frac{x}{4}\Leftrightarrow\frac{7}{6}x=\sqrt{\frac{11x^2}{12}}\Leftrightarrow x=0\left(ktmđk\right)\)
Vậy nghiệm của hệ đã cho là: \(\left(x,y\right)=\left(5;\frac{5}{6}\right),\left(-9-4\sqrt{6};\frac{27+12\sqrt{6}}{2}\right)\)
Năm mới chắc bị lag @@ tớ sửa luôn đề câu 3 nhé :v
3, \(\left\{{}\begin{matrix}8\left(x^2+y^2\right)+4xy+\frac{5}{\left(x+y\right)^2}=13\left(1\right)\\2xy+\frac{1}{x+y}=1\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left[\left(x+y\right)^2-2xy\right]+4xy+\frac{5}{\left(x+y\right)^2}=13\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow8\left(a^2-2b\right)+4b+\frac{5}{a^2}=13\)
\(\Leftrightarrow8a^2-12b+\frac{5}{a^2}=13\)
Ta cũng có \(\left(2\right)\Leftrightarrow2b+\frac{1}{a}=1\)
\(\Leftrightarrow2b=1-\frac{1}{a}\)
Thay vào (1) ta được :
\(8a^2+\frac{5}{a^2}-6\cdot\left(1-\frac{1}{a}\right)=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}-6+\frac{6}{a}=13\)
\(\Leftrightarrow8a^2+\frac{5}{a^2}+\frac{6}{a}=19\)
Giải pt được \(a=1\)
Khi đó \(b=\frac{1-\frac{1}{1}}{2}=0\)
Ta có hệ :
\(\left\{{}\begin{matrix}x+y=1\\xy=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\end{matrix}\right.\)
Vậy...
Ta có: \(\frac{x+2y}{3x+4y}=\frac{2}{5}\)
=> (x + 2y).5 = 2.(3x + 4y)
=> 5x + 10y = 6x + 8y
=> 10y - 8y = 6x - 5x
=> 2y = x
=> \(\frac{2y}{x}=1\)
Vậy \(\frac{2y}{x}=1\)
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
\(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
Nhân hai vế của pt với \(\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)
\(\Leftrightarrow\left(x+\sqrt{1+y^2}\right)\left(x-\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\left(y-\sqrt{1+x^2}\right)=\left(x-\sqrt{1+y^2}\right)\left(y-\sqrt{1+x^2}\right)\)
\(\Leftrightarrow\left(x^2-y^2-1\right)\left(y^2-x^2-1\right)=xy-x\sqrt{1+x^2}-y\sqrt{1+y^2}+\sqrt{\left(1+y^2\right)\left(1+x^2\right)}\)
\(\Leftrightarrow\left[-1+\left(x^2-y^2\right)\right]\left[-1-\left(x^2-y^2\right)\right]=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(xy+x\sqrt{1+y^2}+y\sqrt{1+x^2}+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)\)
\(\Leftrightarrow1^2-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)\)
\(\Leftrightarrow1-\left(x^2-y^2\right)^2=2xy+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-1\)
\(\Leftrightarrow2\left(1-xy\right)=\left(x^2-y^2\right)^2+2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)(*)
Mặt khác : \(2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{x^2+y^2+1+x^2y^2}\)
\(=2\sqrt{x^2+2xy+y^2+x^2y^2-2xy+1}\)
\(=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)
Vì \(\left(x^2-y^2\right)^2\ge0\forall x;y\) do đó theo (*) ta có :
\(2\left(1-xy\right)\ge2\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\)
\(\Leftrightarrow1-xy\ge\sqrt{\left(x+y\right)^2+\left(xy-1\right)^2}\ge\sqrt{\left(xy-1\right)^2}=\left|xy-1\right|\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y^2\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow x=-y\)
Thay vào P ta được :
\(P=x^7-x^7+2x^5-2x^5-3x^3+3x^3+4x-4x+100\)
\(P=0+0-0+0+100\)
\(P=100\)
Vậy...
p/s: mệt...