K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\sqrt[3]{15\sqrt{3}-26}=\sqrt[3]{-\left(26-15\sqrt{3}\right)}\)

\(=-\sqrt[3]{8-3\cdot2^2\cdot\sqrt{3}+3\cdot2\cdot3-3\sqrt{3}}\)

\(=-\sqrt[3]{\left(2-\sqrt{3}\right)^3}=-\left(2-\sqrt{3}\right)=-2+\sqrt{3}\)

 

25 tháng 8 2023

giúp mình với mình đang cần gấp

 

 

27 tháng 8 2023

giúp mình với

22 tháng 6 2021

Trả lời :

\(\left(2+2\right)^2\)

\(=4^2\)

\(=16\)

~HT~

22 tháng 6 2021

trả lời

(2+2)2

=4^2

=16

5 tháng 8 2021

22,

1, Đặt √(3-√5) = A

=> √2A=√(6-2√5)

=> √2A=√(5-2√5+1)

=> √2A=|√5 -1|

=> A=\(\dfrac{\sqrt{5}-1}{\text{√2}}\)

=> A= \(\dfrac{\sqrt{10}-\sqrt{2}}{2}\)

2, Đặt √(7+3√5) = B

=> √2B=√(14+6√5)

 => √2B=√(9+2√45+5)

=> √2B=|3+√5|

=> B= \(\dfrac{3+\sqrt{5}}{\sqrt{2}}\)

=> B= \(\dfrac{3\sqrt{2}+\sqrt{10}}{2}\)

3, 

Đặt √(9+√17) - √(9-√17) -\(\sqrt{2}\)=C

=> √2C=√(18+2√17) - √(18-2√17) -\(2\)

=> √2C=√(17+2√17+1) - √(17-2√17+1) -\(2\)

=> √2C=√17+1- √17+1 -\(2\)

=> √2C=0

=> C=0

26,

|3-2x|=2\(\sqrt{5}\)

TH1: 3-2x ≥ 0 ⇔ x≤\(\dfrac{-3}{2}\)

3-2x=2\(\sqrt{5}\)

-2x=2\(\sqrt{5}\) -3

x=\(\dfrac{3-2\sqrt{5}}{2}\) (KTMĐK)

TH2: 3-2x < 0 ⇔ x>\(\dfrac{-3}{2}\)

3-2x=-2\(\sqrt{5}\)

-2x=-2√5 -3

x=\(\dfrac{3+2\sqrt{5}}{2}\) (TMĐK)

Vậy x=\(\dfrac{3+2\sqrt{5}}{2}\)

 

 

 

 

 

 

6 tháng 8 2021

2, \(\sqrt{x^2}\)=12 ⇔ |x|=12 ⇔ x=12, -12

3, \(\sqrt{x^2-2x+1}\)=7

⇔ |x-1|=7 

TH1: x-1≥0 ⇔ x≥1

x-1=7 ⇔ x=8 (TMĐK)

TH2: x-1<0 ⇔ x<1

x-1=-7 ⇔ x=-6 (TMĐK)

Vậy x=8, -6

4, \(\sqrt{\left(x-1\right)^2}\)=x+3

⇔ |x-1|=x+3

TH1: x-1≥0 ⇔ x≥1

x-1=x+3 ⇔ 0x=4 (KTM)

TH2: x-1<0 ⇔ x<1

x-1=-x-3 ⇔ 2x=-2 ⇔x=-1 (TMĐK)

Vậy x=-1

 

NV
23 tháng 1

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

6 tháng 7 2018

a) \(a^4+b^4\)

\(=\left(a^2\right)^2+\left(b^2\right)^2\)

\(=\left(a^2-b^2\right).\left(a^2+b^2\right)\)

b) Tương tự 

c) \(a^5+b^5\)

\(=\left(\sqrt{a}^5\right)^2+\left(\sqrt{b}^5\right)^2\)

\(=\left(\sqrt{a}^5+\sqrt{b}^5\right).\left(\sqrt{a}^5-\sqrt{b}^5\right)\)

1: \(\left(x+1\right)^3=x^3+3x^2+3x+1\)

2: \(\left(x-1\right)^3=x^3-3x^2+3x-1\)

3: \(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

4: \(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

5: \(\left(x+2\right)^3=x^3+6x^2+12x+8\)

11 tháng 12 2021

a, \(\sqrt{25}-3\sqrt{\dfrac{4}{9}}=5-3.\dfrac{2}{3}=3\)

11 tháng 12 2021

b, \(\left(2-\dfrac{5}{3}\right):\left(\dfrac{2}{7}+\dfrac{5}{21}-1\right)\)

\(=\dfrac{1}{3}:\dfrac{6+5-21}{21}\)

\(=-\dfrac{1}{3}.\dfrac{21}{10}\)

\(=-\dfrac{7}{10}\)