K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi O là tâm của hình vuông ABCD

=>O là trung điểm chung của AC và BD

a:S.ABCD là hình chóp tứ giác đều nên SO vuông góc (ABCD)

mà \(SO\subset\left(SAC\right)\)

nên \(\left(SAC\right)\perp\left(ABCD\right)\)

b: BD vuông góc SO

BD vuông góc AC

\(SO,AC\subset\left(SAC\right)\)

=>\(BD\perp\left(SAC\right)\)

=>\(\left(SAC\right)\perp\left(SBD\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

\(ABCD\) là hình thoi \( \Rightarrow AC \bot B{\rm{D}}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot B{\rm{D}}\)

\(\left. \begin{array}{l} \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\\B{\rm{D}} \subset \left( {SB{\rm{D}}} \right)\end{array} \right\} \Rightarrow \left( {SAC} \right) \bot \left( {SB{\rm{D}}} \right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Tham khảo hình vẽ:

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Do ABCD là hình thoi

=> AC vuông góc với BD

+ SA vuông góc (ABCD)

=> SA vuông góc với BD

Xét (SAC) có:

+ AC vuông góc với BD

+ SA vuông góc với BD

=> BD vuông góc với (SAC)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Trong (SAC) kẻ \(AH \bot SC \Rightarrow d\left( {A,SC} \right) = AH\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{a^2} + {a^2}}  = a\sqrt 2 \)

Xét ta giác SAC vuông tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}} = \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} + \frac{1}{{{{\left( {a\sqrt 2 } \right)}^2}}} = \frac{1}{{{a^2}}} \Rightarrow AH = a\)

\( \Rightarrow d\left( {A,SC} \right) = a\)

b) Ta có \(BD \bot AC,BD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right) \Rightarrow BD \bot \left( {SAC} \right)\)

c) Trong (SAC) kẻ \(OK \bot SC\)

\(\begin{array}{l}OK \bot BD\left( {BD \bot \left( {SAC} \right)} \right)\\ \Rightarrow d\left( {SC,BD} \right) = OK\end{array}\)

Xét tam giác AHC vuông tại H có

O là trung điểm AC

OK // AH (cùng vuông góc SC)

\( \Rightarrow \) OK là đường trung bình \( \Rightarrow \) \(OK = \frac{1}{2}AH = \frac{a}{2}\)\( \Rightarrow d\left( {BD,SC} \right) = \frac{a}{2}\)

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

21 tháng 8 2023

tham khảo:

Thực hành 3 trang 62 Toán 11 tập 2 Chân trời

a) Tam giác SAB có MN là đường trung bình nên MN//SA

Mà SA⊥(ABCD) nên MN⊥(ABCD). Suy ra MN⊥AB

Hình thang ABCD có NP là đường trung bình nên NP//BC//AD. Mà BC⊥AB nên NP⊥AB

Ta có AB vuông góc với hai đường thẳng MN và NP cắt nhau cùng thuộc (MNPQ) nên AB⊥(MNPQ)

b) Vì AB⊥(MNPQ);MQ∈(MNPQ) nên AB⊥MQ

Tam giác SBC có MQ là đường trung bình nên MQ//BC. Mà SA⊥BC nên SA⊥MQ

Ta có MQ vuông góc với hai đường thẳng SA và AB cắt nhau cùng thuộc (SAB) nên MQ⊥(SAB)

27 tháng 4 2022

0

NV
8 tháng 5 2023

a.

\(\left\{{}\begin{matrix}SO\perp\left(ABCD\right)\Rightarrow SO\perp AC\\AC\perp BD\left(\text{hai đường chéo hình vuông}\right)\end{matrix}\right.\) 

\(\Rightarrow AC\perp\left(SBD\right)\)

Mà \(AC\in\left(SAC\right)\Rightarrow\left(SAC\right)\perp\left(SBD\right)\)

b.

\(SO\perp\left(ABCD\right)\Rightarrow OC\) là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCO}\) là góc giữa SC và (ABCD)

\(OC=\dfrac{1}{2}AC=a\sqrt{2}\)

\(tan\widehat{SCO}=\dfrac{SO}{OC}=\sqrt{3}\Rightarrow\widehat{SCO}=60^0\)

c.

Gọi E là trung điểm CD, từ O kẻ \(OF\perp SE\)

OE là đường trung bình tam giác BCD \(\Rightarrow\left\{{}\begin{matrix}OE=\dfrac{1}{2}BC=a\\OE||BC\Rightarrow OE\perp CD\end{matrix}\right.\)

\(\Rightarrow CD\perp\left(SOE\right)\)\(\Rightarrow CD\perp OF\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

Do \(\left\{{}\begin{matrix}AO\cap\left(SCD\right)=C\\AC=2OC\end{matrix}\right.\) \(\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)=2OF\)

Hệ thức lượng: \(OF=\dfrac{OE.SO}{\sqrt{OE^2+SO^2}}=...\)

NV
8 tháng 5 2023

loading...

1: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

=>(SAC) vuông góc (SBD)