Cho tam giác ABC vuông tại A. Trên tia đối tia AB lấy điểm D sao cho A là trung điểm của đoạn BD.
a) Chứng minh tam giác BCD cân.
b) Gọi K là trung điểm BC. Đường thẳng DK cắt AC tại M. Chứng minh AM = 1/2.MC
c) Đường trung trực d của đoạn AC cắt DC tại Q. Chứng minh B, M, Q thẳng hàng.
Cú mìnhhh
a: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
b: Xét ΔCDB có
CA,DK là trung tuyến
CA cắt DK tại M
=>M là trọng tâm
=>AM=1/2MC
c: Gọi giao của d với AC là E
d là trung trực của AE
=>QE vuông góc AC tại E và E là trung điểm của AC
Xét ΔCAD có
E là trung điểm của CA
EQ//DA
=>Q là trung điểm của CD
Xét ΔCBD có
M là trọng tâm
BQ là đường trung tuyến
Do đó; B,Q,M thẳng hàng