A=11...1 +44...4+1 ( biết 11...1 có 2n chữ số;44...4 có n chữ số)
c/m rằng: A la số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta dễ dàng chứng minh được công thức: \(111...1=\frac{10^n-1}{9}\)
(n số 1)
Áp dụng công thức trên ta có:
\(a+b+1=111...1.10^n+111...1+111...1.4+1\)
(n số 1) (n số 1) (n số 1)
\(=\frac{10^n-1}{9}.\left(10^n+1+4\right)+1\)
\(=\frac{10^n-1}{9}.\left(10^n+1+4+3\right)-\frac{10^n-1}{9}.3+1\)
\(=\frac{10^n-1}{9}.\left(10^n+8\right)-\frac{10^n-1}{3}+1\)
\(=111...1.3.333...36-333...3+1\)
(n số 1) (n - 1 số 3) (n số 3)
\(=333...3.333...36-333...32\)
(n số 3)(n - 1 số 3)(n - 1 số 3)
\(=333...3.333...34+333...3+333...3-333...32\)
(n số 3)(n - 1 số 3)(n số 3) (n số 3) (n - 1 số 3)
\(=333...34^2\), là số chính phương (đpcm)
(n - 1 số 3)
Tớ hướng dẫn câu A thui, mấy câu còn lại làm tương tự
A = 9 + 99 + 999 + ... + 99...9(10 chữ số 9)
Ta để ý: 9 = 101 - 1
99 = 102 - 1
999 = 103 - 1
.....
99..9(10 chữ số 9) = 1010 - 1
Công thức tổng quát: \(\overline{aa...aa}=\frac{a}{9}\left(10^n-1\right)\) với n là số chữ số của aa..aa
Suy ra tổng A = 101 + 102 + 103 + ... + 1010 - 10
=> A = 11111111110 - 10 = 111111111100
B,C làm tương tự với công thức tổng quát
a+b+1 = 111..11(2n) +444...44(n) + 1 =111...11(n).10n + 111...11(n) +4.111..11(n) +1
= 111...11(n).(10n-1) +6.111..11(n) +1
= 333...332(n) +2.333...33(n) +1 = ( 333.....3(n)+1)2 dpcm
Ta có \(A=\overset{2n}{11...1}+\overset{n}{44...4}+1\)
\(A=\dfrac{1}{9}.\overset{2n}{99...9}+\dfrac{4}{9}.\overset{n}{99...9}+1\)
\(A=\dfrac{1}{9}\left(10^{2n}-1\right)+\dfrac{4}{9}\left(10^n-1\right)+1\)
\(A=\dfrac{10^{2n}-1+4.10^n-4+9}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Dễ thấy \(10^n+2⋮3\) vì có tổng các chữ số là 3 nên \(\dfrac{10^n+2}{3}\inℕ^∗\). Vậy A là số chính phương (đpcm)