Tam giác ABC vuông tại C có Â = 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc AB ( K thuộc AB ). Kẻ BD vuông góc với AE ( D thuộc AE ). Chứng minh:
a) AC = AK
b) AE vuông góc với CK
c) KA = KB
d) EB > AC
e) Ba đường thẳng AC, BD, KE cùng đi qua một điểm
Nhanh giúp mình với!!!! Ai làm nhanh, có kết quả đúng mình sẽ tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
=>EC=EK
=>E nằm trên đường trung trực của CK(1)
Ta có: ΔACE=ΔAKE
=>AC=AK
=>A nằm trên đường trung trực của CK(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
=>AE\(\perp\)CK
b: Ta có: ΔCAB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CBA}=90^0-60^0=30^0\)
Ta có: AE là phân giác của góc CAB
=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
Ta có: ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: Ta có: EB=EA
EA>AC(ΔAEC vuông tại C)
Do đó: EB>AC
d: Gọi giao điểm của BD và AC là H
Xét ΔHAB có
AD,BC là các đường cao
AD cắt BC tại E
Do đó: E là trực tâm của ΔHAB
=>HE\(\perp\)AB
mà EK\(\perp\)AB
và HE,EK có điểm chung là E
nên H,E,K thẳng hàng
=>AC,BD,KE đồng quy tại H
Em tham khảo tại đây nhé.
Câu hỏi của Bảo Trân Nguyễn Hoàng - Toán lớp 7 - Học toán với OnlineMath
b) Xét tam giác vuông ACB và tam giác vuông BDA có:
Cạnh AB chung
\(\widehat{ABC}=\widehat{BAD}\left(=30^o\right)\)
\(\Rightarrow\Delta ACB=\Delta BDA\) (Cạnh huyền góc nhọn)
\(\Rightarrow AD=BC\)