Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACE vuông tại C và ΔAKE vuông tạiK có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trực của CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
=>K là trung điểm của BC
c: EA=EB
EA>AC
=>EB>AC
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
Suy ra: AC=AK và EC=EK
=>AE là đường trung trực của CK
=>AD là đường trung trực của CK
b: Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó: ΔACE=ΔAKE
=>EC=EK
=>E nằm trên đường trung trực của CK(1)
Ta có: ΔACE=ΔAKE
=>AC=AK
=>A nằm trên đường trung trực của CK(2)
Từ (1) và (2) suy ra AE là đường trung trực của CK
=>AE\(\perp\)CK
b: Ta có: ΔCAB vuông tại C
=>\(\widehat{CAB}+\widehat{CBA}=90^0\)
=>\(\widehat{CBA}=90^0-60^0=30^0\)
Ta có: AE là phân giác của góc CAB
=>\(\widehat{CAE}=\widehat{BAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔEAB có \(\widehat{EAB}=\widehat{EBA}\)
nên ΔEAB cân tại E
Ta có: ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: Ta có: EB=EA
EA>AC(ΔAEC vuông tại C)
Do đó: EB>AC
d: Gọi giao điểm của BD và AC là H
Xét ΔHAB có
AD,BC là các đường cao
AD cắt BC tại E
Do đó: E là trực tâm của ΔHAB
=>HE\(\perp\)AB
mà EK\(\perp\)AB
và HE,EK có điểm chung là E
nên H,E,K thẳng hàng
=>AC,BD,KE đồng quy tại H
Mình ngại vẽ hình qá : )
a) Xét tam giác vuông ABC ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow60^o+\widehat{B}+90^o\Rightarrow\widehat{B}=90^o-60^o=30^o\)
Vì AD là tia phân giác
\(\Rightarrow\widehat{CAE}=\widehat{KAE}=30^o\)
Xét hai tam giác vuông AEK và BEK có:
EK là cạnh chung
\(\widehat{EAK}=\widehat{EBK}\left(cmt\right)\)
\(\Rightarrow\Delta AEK=\Delta BEK\)( cạnh góc vuông góc nhọn kề )
\(\Rightarrow AK=KB\)( cặp cạnh tương ứng bằng nhau )
b) Vì tam giác AEK = tam giác BEK ( cmt )
Suy ra AE = BE ( cặp cạnh tương ứng bằng nhau )
Xét hai tam giác vuông ACE và BDE có:
AE = BE ( cmt )
\(\widehat{AEC}=\widehat{BED}\)( đối đỉnh )
\(\Rightarrow\Delta ACE=\Delta BDE\)( cạnh huyền góc nhọn )
\(\Rightarrow CE=ED\)( cặp cạnh tương ứng )
Mà AE = BE ( cmt )
\(\Rightarrow CE+BE=ED+AE\)
\(\Rightarrow AD=BC\)
Cho tam giác ABC vuông ở C có góc A bằng 60 độ. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB ( K thuộc AB ). Kẻ BD vuông góc với tia AE ( D thuộc AE). Chứng minh :
- AC=AK và AE vuoogn góc với CK
- KA=KB
- EB>AC
- Ba đường thẳng AC,BD,KE cùng đi qua 1 điểm
M.n giúp mình nha :))) Cảm ơn nhiều ^^
a: XétΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)
Do đó; ΔACE=ΔAKE
Suy ra: AC=AK
b: Ta có: ΔACE=ΔAKE
nên EC=EK
mà AC=AK
nên AE là đường trung trực của CK