giải phương trình:
\(\left(x^2+4x+1\right)+4\left(x^2+4x+1\right)=x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x2 - 4x)2 = 4(x2 - 4x)
<=> (x2 - 4x)(x2 - 4x - 4) = 0
<=> x(x - 4)(x2 - 4x - 4) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\\left(x-2\right)^2=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=\pm\sqrt{8}+2\end{matrix}\right.\)
b) (x + 2)2 - x + 1 = (x - 1)(x + 1)
<=> x2 + 4x + 4 - x + 1 = x2 - 1
<=> 3x + 5 = -1
<=> x = -2
\(\left(x-2\right)\left(x-1\right)\left(x-4\right)\left(x-8\right)=4x^2\)
\(\Leftrightarrow[\left(x-2\right)\left(x-4\right)][\left(x-1\right)\left(x-8\right)]=4x^2\)
\(\Leftrightarrow\left(x^2-6x+8\right)\left(x^2-9x+8\right)=4x^2\)
thấy \(x=0;2\) không phải nghiệm của phương trình nên ta chia hai vế của pt cho \(x^2\) ta được \(:\)
\(\Leftrightarrow\left(x+\dfrac{8}{x}-9\right)\left(x+\dfrac{8}{x}-6\right)=4\)
\(Đặt:\) \(x+\dfrac{8}{x}=a\) thì pt trở thành \(:\)
\(\left(a-6\right)\left(a-9\right)=4\)
\(\Leftrightarrow a^2-15a+50=0\)
\(\Leftrightarrow\left(a-5\right)\left(a-10\right)=0\Leftrightarrow\left\{{}\begin{matrix}a=5\\a=10\end{matrix}\right.\)
\(Với\) \(a=5\) thì \(x+\dfrac{8}{x}=5\Leftrightarrow x^2-5x+8=0\left(vônghiem\right)\)
\(Với\) \(a=10\) thì \(x+\dfrac{8}{x}=10\Leftrightarrow x^2-10x+8=0\Leftrightarrow\left\{{}\begin{matrix}x=5-căn17\\x=5+căn17\end{matrix}\right.\)
\(Vậy...\)
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
`(x^2-x+1)^4+4x^4=5x^2(x^2-x+1)^2`
Đặt `a=(x^2-x+1)^2,b=x^2`
`pt<=>a^2+4b^2=5ab`
`<=>a^2-5ab+4b^2=0`
`<=>a^2-ab-4ab+4b^2=0`
`<=>a(a-b)-4b(a-b)=0`
`<=>(a-b)(a-4b)=0`
`<=>` $\left[ \begin{array}{l}a=b\\a=4b\end{array} \right.$
`+)a=b`
`<=>x^2=(x^2-x+1)^2`
`<=>(x^2+1)(x^2-2x+1)=0`
`<=>(x-1)^2=0` do `x^2+1>0`
`<=>x=1`
`+)a=4b`
`<=>x^2=4(x^2-x+1)^2`
`<=>x^2=(2x^2-2x+1)^2`
`<=>(2x^2-x+1)(2x^2-3x+1)=0`
`+)2x^2-x+1=0`
`<=>x^2-1/2x+1/2=0`
`<=>(x-1/4)^2+7/16=0` vô lý
`+)2x^2-3x+1=0`
`<=>2x^2-2x-x+1=0`
`<=>2x(x-1)-(x-1)=0`
`<=>(x-1)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac{1}{2}\end{array} \right.$
Vậy `S={1,1/2}`
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a: Ta có: \(\sqrt{1-x^2}=x-1\)
\(\Leftrightarrow1-x^2=x-1\)
\(\Leftrightarrow1-x^2-x+1=0\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2+4x+4}=x-2\)
\(\Leftrightarrow\left|x+2\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(x\ge-2\right)\\x+2=2-x\left(x< -2\right)\end{matrix}\right.\Leftrightarrow2x=0\)
hay x=0(loại)
Bài 1: Giải các phương trình sau:
a) 3(2,2-0,3x)=2,6 + (0,1x-4)
<=> 6.6 - 0.9x = 2,6 + 0,1x - 4
<=> - 0.9x - 0,1x = -6.6 -1,4
<=> -x = -8
<=> x = 8
Vậy x = 8
b) 3,6 -0,5 (2x+1) = x - 0,25(22-4x)
<=> 3,6 - x - 0,5 = x - 5,5 + x
<=> - x - 3,1 = -5,5
<=> - x = -2.4
<=> x = 2.4
Vậy x = 2.4
Đề bài là \(\left(x^2+4x+1\right)^2+4\left(x^2+4x+1\right)=x-1\) có đúng không nhỉ?
Vì đề bài thế này thì vế trái người ta sẽ cộng luôn thành \(5\left(x^2+4x+1\right)\)
đề bài chắc đúng á thầy em tính ra
x1=-(19-\(\sqrt{ }\)241)/10
x2=-(19+\(\sqrt{ }\)241)/10