K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

Gọi số nguyên đầu tiên là a

số nguyên tiếp theo là a+1;a+2;...a+k-1

thực hiện phép chia a cho k ta được 

a=kq+r với r=0;1;2;...k-1

từ đó ta có đpcm 

17 tháng 10 2018

Xét Ví dụ:

3,4,5,6 có 4\(⋮\)4

Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM

Mk chỉ bt thế thôi

18 tháng 10 2018

Xét, Ví dụ  :

3;4;5;6; có 4 : 4

Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM

22 tháng 1 2020

C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2

ta có: 

a+(a+1)+(a+2)

=3a+3

=3(a+1) => chia hết cho 3 

22 tháng 1 2020

d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4 

Ta có: a + a+1 + a+2 +a+3 +a+4

         =5a +10

        =5(a+2) => chi hết cho 5

4 tháng 3 2021

Gọi 5 số tự nhiên liên tiếp là a, a + 1, + 2, a + 3, a + 4. Nếu:

+ a  5 sẽ có 1 số chia hết cho 5.  ĐPCM

+ a : 5 dư 1 thì a + 4  5. Vậy sẽ có 1 số chia hết cho 5.  ĐPCM

+ a : 5 dư 2 thì a + 3  5. Vậy sẽ có 1 số chia hết cho 5.  ĐPCM

+ a : 5 dư 3 thì a + 2  5. Vậy sẽ có 1 số chia hết cho 5.  ĐPCM

+ a : 5 dư 4 thì a + 1  5. Vậy sẽ có 1 số chia hết cho 5.  ĐPCM

 Điều phải chứng minh

a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1 

Nếu a là số chẵn => a chia hết cho 2 

Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2

Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .

b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2

Nếu a chia hết cho 3 thì bài toán luôn đúng

Nếu a chia 3 dư 1 thì a = 3k +1

=> a + 2 = 3k + 1 + 2 = 3k + 3 

=> a + 2 chia hết cho 3

Nếu a chia 3 dư 2 thì a = 3k + 2

=> a + 1 = 3k + 2 + 1 = 3k + 3

=> a + 1 chia hết cho 3

Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .

4 tháng 10 2017

số chẵn liên tiếp là: a x 2; a x 2+2

a x 2 chia hết cho 2 + thêm 2 vào nó sẽ chia hết cho 4 vì 2 + 2 = 4

vd:2,4;6,8

4 tháng 10 2017

- Gọi 2 số tự nhiên chẵn liên tiếp đó là a và a+2 ( a là số tự nhiên )
TH1 : \(a⋮4\)=) a+2 chia 4 dư 2 hay không chia hết cho 4
=) Điều phải chứng minh trong 2 số tự nhiên chẵn liên tiếp chỉ có 1 VÀ CHỈ 1 số chia hết cho 4
TH2 :  a không chia hết cho 4 =) a chia 4 dư 1 , dư 2 , dư 3
=) a = 4k+1 , 4k+2 , 4k+3
Mà đề yêu cầu là số chẵn =) a = 4k+2 ( vì 4k và 2 là số chẵn , và 4k + 1 và 4k + 3 sẽ ra kết quả là số lẻ )
=) a + 2 = (4k+2)+2=4k+4 
Có 4k và 4 chia hết cho 4 =) Tổng 4k+4 chia hết cho 4 hay a+2 chia hết cho 4
=) Điều phải chứng minh trong 2 số tự nhiên liên tiếp chỉ có 1 VÀ CHỈ 1 số chia hết cho 4
Vậy cả 2 trường hợp đều có đpcm ( điều phải chứng minh ) 

22 tháng 12 2015

Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2

TH1 nếu a chia hết cho 3

=> a có dạng 3k

=>a+1=3k+1(ko chia hết cho 3)

=>a+2=3k+2(ko chia hết cho 3)

Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3

TH2 a+1 chia hết cho 3

=>a+1 có dạng 3k

=>a=3k-1 (ko chia hết cho 3)

=>a+2=3k+1(ko chia hết cho 3)

=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3

TH3 (làm tương tự nha bạn)

b,Tick rồi mình làm tiếp cho