Tìm \(3\) số tự nhiên liên tiếp biết rằng tổng của \(3\) tích của \(2\) trong \(3\) số ấy bằng \(242\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
n(n+1) + (n + 1)(n + 2) + n(n + 2) = 242
<=> 3n2 + 6n + 2 = 242
<=> n = 8
Cách của " alibaba nguyễn" không phù hợp lắm nhưng vẫn đúng nha !
C2: Gọi 3 số cần tìm : n-1; n; n+1
Theo bài ra ,ta có:
\(\left(n-1\right)n+n\left(n+1\right)+\left(n-1\right)\left(n+1\right)=242\)
\(\Rightarrow n^2-n+n^2+n+n^2-1=242\)
\(\Rightarrow3n^2=243\)
\(\Rightarrow n=9\)
Vậ 3 số cần tìm là: 8, 9, 10
Gọi 3 số tự nhiên liên tiếp đó là x;x+1;x+2
Vì nếu cộng 3 tích của hai trong ba số ấy ta được 242:
⇒x.(x+1)+x.(x+2)+(x+1).(x+2)=242
⇔x\(^2\)+x+x\(^2\)+2x+x\(^2\)+x+2x+2=242
⇔3x\(^2\)+6x−240=0
⇔(x−8).(x+10)=0
⇔[x=8
x=−10
Vậy ba số tự nhiên đó là : 8;9;10 và −10;−9;−8
3 số đó là 8 , 9 , 10
bạn muốn rõ hơn thì vào tìm kiếm là được
Gọi x-1 ,x ,x+1 là 3 số tự nhiên liên tiếp ta có
x(x-1)+x(x+1)+(x-1)(x+1)=242
Sau khi rút gọn ta dc: 3x^2-1=242 nên x^2=81
Suy ra x=+-8
Giả sử 3 số cần tìm là x<y<z
=> y=x+1; z=x+2
Theo đề bài
xy+yz+xz=242
=> x(x+1)+(x+1)(x+2)+x(x+2)=242
<=> x2+x+x2+3x+2+x2+2x=242
<=>3x2+6x-240=0
Giải PT bậc 2 tìm được x từ đó suy ra y và z